
lfd Documentation
Release 1.0

Dino Bektesevic

Jul 07, 2020

Contents:

1 Top level LFD overview 1
1.1 Setup . 1
1.2 Examples . 2

2 Linear Feature detection 5
2.1 Detection parameters . 5
2.2 Examples . 6
2.3 Table of removestars parameters . 7
2.4 Table of bright parameters . 8
2.5 Table of dim parameters . 9
2.6 Module: removestars . 9
2.7 Module: detecttrails . 11
2.8 Module: processfield . 12

3 Handling the results 17
3.1 Database and setup . 17
3.2 Connecting to the DB . 18
3.3 Examples . 19
3.4 Common misuse patterns . 22
3.5 Event . 23
3.6 Frame . 26
3.7 Point . 28
3.8 Time . 32
3.9 Utilities . 33

4 Creating DQS cluster jobs 35
4.1 Setup . 35
4.2 Templates . 35
4.3 Examples . 37
4.4 Jobs . 40

5 GUIs 43
5.1 Verifying results . 43
5.2 Creating DQS jobs . 52

6 Analysis 57
6.1 Profiles . 57

i

6.2 Plotting . 66
6.3 Utils . 76

7 Dependencies 79

8 Indices and tables 81

Python Module Index 83

Index 85

ii

CHAPTER 1

Top level LFD overview

1.1 Setup

Certain modules depend on certain environmental variables to figure out where the data lives and how it’s organized.
It is recommended that conventional SDSS file naming and directory structures are followed. SDSS generally follows
structure shown below:

boss
photo

redux
photoRunAll-dr{DR}.par
runList.par

photoObj
301

[RUN]
[CAMCOL]
photoObj-{PADDED_RUN}-CAMCOL-{PADDED_FIELD}.fits

frames
[RUN]

[CAMCOL]
frame-{FILTER}-{PADDED_RUN}-CAMCOL-{PADDED_FIELD}.fits

Where the RUN marks the integer designation of the desired run (i.e. 94, 2888) and PADDED_RUN marks the integer
run designation padded to 6 digits by preceding zeros (i.e. 000094, 002888). The slight difference between the
PADDED_RUN and PADDED_FIELD is the fact that the field is only padded to 4 digits The square bracketted items
(i.e. [RUN] means a directory named 94 or 2888). Finally there are two files requried to detect linear features. One is
the image itself - these are the frame files (i.e. frame-i-000094-1-0168.fits) and the other required file is the catalog of
all detected sources on that image - these are the photoObj files.

1

lfd Documentation, Release 1.0

The files photoRunAll-dr{DR}.par and runList.par store the parameters of all the runs that SDSS made up to the DR
(Data Release number). This is determined by the Data Release number from which the data was selected and down-
loaded from - f.e. for DR10 data release the appropriate file is photoRunAll-dr10.par. These files are downloadable
from the SDSS servers.

The SDSS directory structure can be overriden by providing the required environmental variables. The environmental
variables point to different folders and subfolders of this structure. They are listed and explained in the following table:

Env. Var. Name Points to
BOSS Top level boss directory
PHOTO_OBJ boss/photoObj directory
PHOTO_REDUX boss/photo/redux directory

These variables can be set through the terminal prior, or after, importing the lfd library by using the following com-
mands:

export $ENVVAR=/some/path

or:

setenv $ENVVAR=/some/path

depending on the shell and OS used. Or they can be set by using top-level functionality in the lfd module.

lfd.setup_detecttrails(bosspath=None, photoobjpath=None, photoreduxpath=None, debug-
path=None)

Sets up the environmental paths BOSS, BOSS_PHOTOOBJ, PHOTO_REDUX and DEBUG_PATH required
for detecttrails package. Defining custom BOSS, BOSS_PHOTOOBJ and PHOTO_REDUX variables allows
data not to follow the SDSS convention.

Parameters

• bosspath (str) – The path to which BOSS environmental variable will be set to. This is
the “boss” top directory. Default is set to ~/Desktop/boss

• photoobjpath (str) – The path to which BOSS_PHOTOOBJ env. var. will be set to.
Default is $BOSS/photoObj.

• photoreduxpath (str) – The path to which PHOTO_REDUX env. var. will be set to.
By default set to $BOSS/photo/redux-

• debugpath (str) – The path to which DEBUG_PATH env. var. will be set to. The
current dir by default. Used to run detecttrails module in debug mode.

lfd.setup_createjobs(photoreduxpath=None)
Sets up the environmental path of PHOTO_REDUX only! Minimum environment required for certain createjobs
package functionality.

Parameters photoreduxpath (str) – The path to which PHOTO_REDUX env. var. will be set
to. Defaults to ‘~/Desktop/boss/photoredux’.

1.2 Examples

Need to fill this out

Listed below are the packages contained in LFD and a description of their purpose:

2 Chapter 1. Top level LFD overview

lfd Documentation, Release 1.0

• analysis - contains code required to create theoretical cross section profiles of defocused meteors and various
plotting utilities

• createjobs - contains the code required to create PBS scripts that can be submited to a cluster using QSUB
commands

• detecttrails - contains the image processing code that detects images containing linear features and outputs
measured parameters

• errors - (not finished) contains functionality to parse any error messages outputed by detecttrails module whilst
running on a cluster

• gui - contains the GUI interface to createjobs module and an image browser designed for faster and easier
verification of results

• results - contains the required functionality to collate and parse the results outputed by detecttrails module.

1.2. Examples 3

lfd Documentation, Release 1.0

4 Chapter 1. Top level LFD overview

CHAPTER 2

Linear Feature detection

2.1 Detection parameters

The detection execution parameters can be viewed/changed by accessing the params dictionaries of the
DetectTrails class.

1 import lfd.detecttrails as detect
2 foo = detect.DetecTrails(run=2888, camcol=1, filter='i', field=139)
3 foo.params_bright
4 foo.params_dim
5 foo.params_removestars

A special debug key can be set to True for any of the individual steps of the algorithm which will produce a very
verbose output to stdout as well as save snapshots of the processed image in intermediate steps to a location pointed
to by DEBUG_PATH environmental variable.

1 import lfd.detecttrails as detect
2 foo = detect.DetecTrails(run=2888, debug=True)

or, individually

1 foo.params_removestars["debug"] = True
2 foo.params_bright["debug"] = True
3 foo.params_dim["debug"] = True

The verbose output contains printed statements of acceptance tests such as average angles, difference in image posi-
tions between fitted lines etc. Additionally a number of images that help identifying the detection limiting factors are
saved as well. For the bright detection step the following images are saved:

• equBRIGHT - equalized 8bit int image with known objects masked out

• dilateBRIGHT - equalized and dilated image

• contoursBRIGHT - rectangles that pass the tests are drawn on the image

• boxhoughBRIGHT - rectangles with corresponding fitted lines (set 1)

5

lfd Documentation, Release 1.0

• equhoughBRIGHT - processed image with second set of fitted lines (set 2)

while the dim detection step in debug mode produces the following set of images:

• equDIM - equlized, 8bit img, removed objects, increased brightness

• erodedDIM - equalized and eroded image without known objects

• openedDIM - equalized, eroded and dilated image without known objects

• contoursDIM - accepted rectangles

• equhoughDIM - processed img with with the first set of fitted lines

• boxhoughDIM - rectangles image with the second set of fitted lines

For the full list of parameters, their types and descriptions see the following tables sections. To get a bet-
ter understanding of detection parameters contoursMode, contoursMethod, minAreaRectMinLen and lwTresh see
fit_minAreaRect(). For nlinesInSet, thetaTresh, linesetTresh see check_theta(). For removestars params
see doc remove_stars().

2.2 Examples

The setup is mandatory for this package as it needs access to data, so either set the required environmental variables
before running python interpreter or use one of the provided functions.

If SDSS convention is followed but it is sufficient to point to boss only.

1 import lfd
2 lfd.setup_detecttrails()
3 lfd.setup_detecttrails("~/path/boss")
4 lfd.setup_detecttrails("~/boss", photoreduxpath="/foo/bar")

The above examples are appropriate in the following cases:

• boss directory is located at ~/Desktop/boss and SDSS conventions apply

• boss directory is not in its default position and SDSS conventions apply

• is a common use case when the run metadata (the .par files) are stored elsewhere but image data still follows
SDSS convention.

This functionality is replicated in the lfd.detecttrails.setup() function but is not as practical as using the
lfd.setup_detecttrails() because it does not declare default values or assumes SDSS convention. Using
either allows a complete departure from SDSS conventions

1 lfd.detecttrails.setup("~/boss", "~/boss/photoObj", "~/boss/photo/redux")

After that instantiate the DetectTrails class, target desired data, and run lfd.detecttrails.DetectTrails.
process() method. It’s practical to import the module into the namespace. At least 1 data targeting keyword has to
be given.

1 import lfd.detecttrails as detect
2 foo = detect.DetecTrails(filter="i")
3 foo = detect.DetectTrails(camcol=1)
4 foo = detect.DetectTrails(run=2888)
5 foo = detect.DetectTrails(run=2888, camcol=1)
6 foo = detect.DetectTrails(run=2888, camcol=1, filter='i')
7 foo = detect.DetectTrails(run=2888, camcol=1, filter='i', field=139)
8 foo.process()

6 Chapter 2. Linear Feature detection

lfd Documentation, Release 1.0

The above examples will process different data. Listed in the same order:

• Process filter ‘i’ of all fields and filters of all runs

• Process camcol 1 of all fields and filters of all runs

• Process all fields, camcols and filters of run 2888

• Process all filters and fields of run 2888 but only for its first camera column

• Process only the ‘i’ filter of camcol 1 of the run 2888 for all fields

• Process this single specific field

Caution: The size of the selected dataset reduces from top to bottom of the list. The first example (selecting a
single filter) will try to process dataset 1/5th the size of the entire SDSS dataset!

2.3 Table of removestars parameters

Parameter Name Type Default value Description
pixscale float 0.396 SDSS pixel scale in arc-

sec/pixel.
defaultxy int 20 Half of the length of

squares drawn over stars.
Used when there’s no Pet-
rosian radius availible or
if length/2 of square sides
are larger than maxxy. In
pixels.

maxxy int 60 Max allowed half-length
of square sides. Max cov-
ered area is 120x120

filter_caps dict
{u:22., g:22.2, r:22.2,

i:21.3, z:20.5}

Objects dimmer than fil-
ter_caps will not be re-
moved (filter dependent)

magcount int 3 max allowed number of
filters in which magnitude
difference is larger than
maxmagdiff

maxmagdiff float 3 Min number of votes re-
quired in Hough space to
be considered a valid line

debug bool False see above.

2.3. Table of removestars parameters 7

lfd Documentation, Release 1.0

2.4 Table of bright parameters

Param-
eter
Name

Type Default
value

Description

dilateK-
ernel

ar-
ray

np.ones((4,4)) Dilation kernel

con-
toursMode

CV2
const

cv2.RETR_LISTAll edges returned, see OpenCV of findContours for details.

con-
toursMethod

CV2
const

cv2.CHAIN_
AP-
PROX_NONE

All edge points returned, see OpenCV of findContours

minAreaRect-
Minlen

int 1 Once contours have been found minimal area rectangles are fitted. Length of
sides are determined. If determined. If either side is shorter than this value, in
pixels, the detection is dismissed.

lwTresh int 5 ratio that longer/shorter rectangle side has to satisfy to be considered a possibly
valid detection

hough-
Method

int 20 Min number of votes required in Hough space to be considered a valid line

nli-
nesIn-
Set

int 3 Hough transform returns a list of all possible lines. Only nlinesInSet top voted
for lines are taken into consideration for futher checks. This is called a “set” of
lines. There are 2 sets in total.

theta-
Tresh

float 0.15 if within a single set the dispe- rsion of maximal-minimal theta is larger than
thetaTresh, detection is dismissed as False. In radians

lineset-
Tresh

float 0.15 if both line sets pass thetaTresh, but their respective average thetas are larger
than this, detection is dismissed. In radians.

dro int 25 if r averages of both Hough line sets are larger than dro then detection is dis-
missed as false.

debug bool False see above.

8 Chapter 2. Linear Feature detection

lfd Documentation, Release 1.0

2.5 Table of dim parameters

Param-
eter
Name

Type Default
value

Description

minFlux float 0.02 for bright, all negative values are set to 0. For dim, all values below minFlux
treshold are set to zero.

addFlux float 0.5 value added to all remaining pixels with values still above 0.
erodeK-
ernel

ar-
ray

np.ones((3,3)) Erosion kernel

dilateK-
ernel

ar-
ray

np.ones((9,9)) Dilation kernel

con-
toursMode

CV2
const

cv2.RETR_LISTAll edges returned, see OpenCV of findContours for details.

con-
toursMethod

CV2
const

cv2.CHAIN_
AP-
PROX_NONE

All edge points returned, see OpenCV of findContours

minAreaRect-
Minlen

int 1 Once contours have been found minimal area rectangles are fitted. Length of
sides are determined. If determined. If either side is shorter than this value, in
pixels, the detection is dismissed.

lwTresh int 5 ratio that longer/shorter rectangle side has to satisfy to be considered a possibly
valid detection

hough-
Method

int 20 Min number of votes required in Hough space to be considered a valid line

nli-
nesIn-
Set

int 3 Hough transform returns a list of all possible lines. Only nlinesInSet top voted
for lines are taken into consideration for futher checks. This is called a “set” of
lines. There are 2 sets in total.

theta-
Tresh

float 0.15 if within a single set the dispe- rsion of maximal-minimal theta is larger than
thetaTresh, detection is dismissed as False. In radians

lineset-
Tresh

float 0.15 if both line sets pass thetaTresh, but their respective average thetas are larger
than this, detection is dismissed. In radians.

dro int 20 if r averages of both Hough line sets are larger than dro then detection is dis-
missed as false.

debug bool False see above.

2.6 Module: removestars

Removestars module contains all the required functionality to read a catalog source and blot out objects in the image.
Currently only SDSS photoObj files are supported as a catalog source. Old code supporting CSV catalog sources was
left as an example how its relatively simple to add a different catalog source.

lfd.detecttrails.removestars.read_photoObj(path_to_photoOBJ)
Function that reads photoObj headers and returns following lists:

Returns

• row (list(dict)) – y coordinate of an object on the image. Each entry is a dictionary where
keys are the filter designations and values the coordinates

• col (list(dict)) – x coordinate of an object on the image. Each entry is a dictionary where
keys are the filter designations and values the coordinates

2.5. Table of dim parameters 9

lfd Documentation, Release 1.0

• psfMag (list(dict)) – Each entry is a dictionary where keys are the filter designations and
values the magnitudes. See: http://www.sdss3.org/dr10/algorithms/magnitudes.php#mag_
psf

• nObserve (list(int)) – Number of times that object was imaged by SDSS.

• objctype (list(int)) – SDSS type identifier, see cas.sdss.org/dr7/de/help/browser/enum.asp?n=ObjType

• petro90 (list(dict)) – This is the radius, in arcsec, from the center of the object that
contains 90% of its Petrosian flux. Each entry is a dictionary where keys are the
filter designations and values the radii. See: http://www.sdss3.org/dr10/algorithms/
magnitudes.php#mag_petro and http://data.sdss3.org/datamodel/files/BOSS_PHOTOOBJ/
RERUN/RUN/CAMCOL/photoObj.html

Parameters path_to_photoOBJ (str) – string type system path to a photoObj*.fits file

lfd.detecttrails.removestars.remove_stars(img, _run, _camcol, _filter, _field, defaultxy,
filter_caps, maxxy, pixscale, magcount, max-
magdiff, debug)

Removes all stars found in coordinate file from a given image by “blottings” out black squares at objects coor-
dinats.

Size of the square is, if possible, determined according to its petrosian magnitude. The square is up/down-scaled
by a scaling factor converting the object size from arcsec to pixel size. If the calculated radius is less than zero
or bigger than maximal allowed size, a default square size is used.

Aditionally to determining size of the blocked out square, function tries to discriminate actual sources from false
ones.

Squares will only be drawn:

• if there is a valid psfMag value.

• for those psfMag values that are under a certain user-set cap.

• if differences in measured magnitudes of all filters are less maxmagdiff in more than or equal to magcount
filters. F.e. for maxmagdiff=5 magcount=3

won’t pass: [2,8,8,8,8], [2,2,8,8,8], [1,1,7,8,9]
will pass: [5,6,7,8,9], [3,6,7,8,9], [3,3,7,8,9]

Idea is that psfMag values that contain only “opposite” extreme values (very bright/very dim) are most likely a
false detection, they exist in one of the filters but not in any others. Such objects are not removed.

Parameters

• img (np.array) – grayscale 8 bit image

• _run (int) – run identifier

• _camcol (int) – camera column identifier 1-6

• _filter (str) – filter identifier (u,g,r,i,z)

• _field (int) – field identifier

• defaultxy (int) – default length of half of the total length of square sides

• filter_caps (dict) – dictionary (u,g,r,i,z) that defines the limiting magnitude under
which objects are not erased

• maxxy – maximal allowed length of the half the length of square side, int

10 Chapter 2. Linear Feature detection

http://www.sdss3.org/dr10/algorithms/magnitudes.php#mag_psf
http://www.sdss3.org/dr10/algorithms/magnitudes.php#mag_psf
http://www.sdss3.org/dr10/algorithms/magnitudes.php#mag_petro
http://www.sdss3.org/dr10/algorithms/magnitudes.php#mag_petro
http://data.sdss3.org/datamodel/files/BOSS_PHOTOOBJ/RERUN/RUN/CAMCOL/photoObj.html
http://data.sdss3.org/datamodel/files/BOSS_PHOTOOBJ/RERUN/RUN/CAMCOL/photoObj.html

lfd Documentation, Release 1.0

• pixscale – pixel scale. 1 pixel width represents pixscale arcsec.

• dxy – default side dimension of drawn rectangle.

• magcount – maximal allowed number of filters with differences of mag. greater than
maxmagdiff.

• maxmagdiff – maximal allowed difference between two magnitudes.

2.7 Module: detecttrails

Detecttrails module is the SDSS oriented wrapper that will call the correct order of operations on the targeted data to
succesfully run LFD. The module also handles the IO operations required to succesfully store results and wraps the
required functionality for easier debugging.

class lfd.detecttrails.detecttrails.DetectTrails(**kwargs)
Convenience class that processes targeted SDSS frames.

Example usage

foo = DetectTrails(run=2888)
foo = DetectTrails(run=2888, camcol=1, filter='i')
foo = DetectTrails(run=2888, camcol=1, filter='i', field=139)
foo.process()

At least 1 keyword has to be sent!

See documentation for full details on detection parameters. Like results and errors file paths, detection parame-
ters are optional too and can be set after instantiation through provided dictionaries.

foo.params_dim
foo.params_bright["debug"] = True
foo.params_removestars["filter_caps"]["i"] = 20

All errors are silenced and dumped to error file. Results are dumped to results file.

Parameters

• run (int) – run designation

• camcol (int) – camcol designation, 1 to 6

• filter (str) – filter designation, one of ugriz filters

• field (int) – field designation

• params_dim (dict) – detection parameters for detecting dim trails. See docs for details.

• params_bright (dict) – detection parameters for bright trails. See docs for details.

• params_removestars (dict) – detection parameters for tuning star removal. See docs
for details.

• debug (bool) – turns on verbose and step-by-step image output visualizing the processing
steps for all steps simultaneously. If $DEBUGPATH env. var. is not set errors will be raised.

• results (str) – path to file where results will be saved

• errors (str) – path to file where errors will be stored

_getRuns()
Reads runlist.par file and returns a list of all runs.

2.7. Module: detecttrails 11

lfd Documentation, Release 1.0

_load()
Parses the send kwargs to determine what selection users wants to process. Currently supported options
are:

• run

• run-camcol

• run-filter

• run-filter-camcol

• camcol-filter

• camcol-frame

• field (full specification run-filter-camcol-frame)

_runInfo()
Reads runlist.par file and extracts startfield and endfield of a run. Runs are retrieved from self._run attribute
of instance.

process()
Convenience function that runs process_field() for various inputs. Not using this function will void major-
ity of error and exception handling in processing.

2.8 Module: processfield

Processfield is the image analysis workhorse module behind detecttrails. It contains all the functionality required to
detect lines independend of the source of data, only the ingoing format and type.

Wrapping the functionality in this module for various different catalog and image sources so that the correct order
of operations is ensured for different directory structures is what makes detecttrails capable of processing variety of
different images.

lfd.detecttrails.processfield.process_field_bright(img, lwTresh, thetaTresh, di-
lateKernel, contoursMode,
contoursMethod, minAreaRect-
MinLen, houghMethod, nlinesIn-
Set, lineSetTresh, dro, debug)

Function detects bright trails in images. For parameters explanations see DetectTrails documentation for help.

1. pixels with values bellow minFlux are set to 0

2. Scale the image to 8 bit integer, 1 channel

3. histogram equalization

4. dilate to expand features

5. fit minimal area rectangles. Function aborts if no minAreaRect are found, see: fit_minAreaRect help

6. fit Hough lines on image and on found rectangles

7. compare lines, see: check_theta help

8. if evaluation passed write the results into file and return True, else returns False.

Parameters

• img (np.array) – numpy array representing gray 32 bit 1 chanel image.

• lwTresh (float) – treshold for the ratio of rectangle side lengths that has to be satistfied

12 Chapter 2. Linear Feature detection

lfd Documentation, Release 1.0

• thetatresh (float) – treshold for the difference of angles, in radians, that each fitted
set of lines has to satisfy

• dilateKernel (np.array) – kernel used to dilate the image

• contoursMode (cv2.const) – cv2.RETR_LIST should be used, but any return type of
fitted contours supported by OpenCV is allowed

• contoursMethod (cv2.const) – cv2.CHAIN_APPROX_NONE should be used, but
any return type of fitted contours supported by OpenCV is allowed

• minAreaRectMinLen (int) – treshold for minimal allowed length of fitted minimal
area rectangles

• houghMethod (int) – treshold for minimum number of votes lines need to get in Hough
space to be returned

• nlinesInSet (int) – number of most voted for lines that will be considered for colin-
earity tests

• lineSetTresh (float) – treshold for maximal allowed angle deviation between two
sets of fitted lines

• dro (int) – treshold for maximal allowed distance between the average x-axis intersection
coordinates of the two sets of lines

lfd.detecttrails.processfield.process_field_dim(img, minFlux, addFlux, lwTresh,
thetaTresh, erodeKernel, dilateKer-
nel, contoursMode, contoursMethod,
minAreaRectMinLen, houghMethod,
nlinesInSet, dro, lineSetTresh, debug)

Function detects dim trails in images. See DetectTrails documentation for more detailed explanation of param-
eters

1. pixels with values bellow minFlux are set to 0

2. addFlux is added to remaining pixels

3. Scale the image to 8 bit 1 chanel

4. histogram equalization

5. erode to kill noise

6. dilate to expand features that survived

7. fit minimal area rectangles. Function aborts if no minAreaRect are found, see: fit_minAreaRect help

8. fit Hough lines on image and on found rectangles

9. compare lines, see: help(check_theta)

10. if evaluation passed write the results into file and return True, else returns False.

Parameters

• img (np.array) – numpy array representing gray 32 bit 1 chanel image.

• minFlux (float) – treshold for maximal allowed pixel brightness value under which
pixel values will be set to zero

• addFlux (float) – the brightness that will be added to all pixels above minFlux

• lwTresh (float) – treshold for the ratio of rectangle side lengths that has to be satistfied

2.8. Module: processfield 13

lfd Documentation, Release 1.0

• thetatresh (float) – treshold for the difference of angles, in radians, that each fitted
set of lines has to satisfy

• dilateKernel (np.array) – kernel used to erode the image

• dilateKernel – kernel used to dilate the image

• contoursMode (cv2.const) – cv2.RETR_LIST should be used, but any return type of
fitted contours supported by OpenCV is allowed

• contoursMethod (cv2.const) – cv2.CHAIN_APPROX_NONE should be used, but
any return type of fitted contours supported by OpenCV is allowed

• minAreaRectMinLen (int) – treshold for minimal allowed length of fitted minimal
area rectangles

• houghMethod (int) – treshold for minimum number of votes lines need to get in Hough
space to be returned

• nlinesInSet (int) – number of most voted for lines that will be considered for colin-
earity tests

• lineSetTresh (float) – treshold for maximal allowed angle deviation between two
sets of fitted lines

• dro (int) – treshold for maximal allowed distance between the average x-axis intersection
coordinates of the two sets of lines

lfd.detecttrails.processfield.setup_debug()
Sets up the module global variables - paths to where the debug output is saved. Invoked when ‘debug’ key is set
to True for any of the detection steps. Generally there would be no need to call this function otherwise.

lfd.detecttrails.processfield.check_theta(hough1, hough2, navg, dro, thetaTresh, lineSet-
Tresh, debug)

Comapres colinearity between lines in each set of lines provided and between the two sets. If the lines in each
set are nearly parallel and the two sets are nearly parallel and if the lines are intersecting the x axis at nearly the
same point then they are nearly colinear.

Warning: Function returns True when a test is satisfied - this means that the lines are not colinear.

Calculates the difference between max and min angle values of each set of fitted lines. If these diffs. are larger
than thetaTresh, returns True.

dtheta = abs(theta.max()-theta.min())
if dtheta2> theta_tresh: return True

Difference of averages of angles in both sets are compared with linesetTresh. If the diff. is larger than lineset-
Tresh a True is returned.

dtheta = abs(numpy.average(theta1-theta2))
if numpy.average(dtheta)> lineset_tresh: return True

If the average x axis intersection of the two line sets are not close enough True is returned

if abs(np.average(ro1)-np.average(ro2))>dro: return True

Parameters

14 Chapter 2. Linear Feature detection

lfd Documentation, Release 1.0

• hough1 (cv2.HoughLines) – 2D array of line parameters representing the first set of
lines that will be compared. Line parameters are stored as tuples, i.e. hough1[0][i] –>
tuple(ro, theta)

• hough2 (cv2.HoughLines) – second set of lines to be compared

• navg (int) – number of lines that will be averaged together

• thetaTresh (float) – treshold, in radians, that each line set must not be bigger than

• linesetTresh (float) – treshold, in radians, that the difference of the two line sets
should not be bigger than.

• debug (bool) – produces a verboose output of calculated values.

lfd.detecttrails.processfield.draw_lines(hough, image, nlines, name, path=None, com-
pression=0, color=(255, 0, 0))

Draws hough lines on a given image and saves it as a png.

Parameters

• hough (cv2.HoughLines) – 2D array of line parameters, line parameters are stored in
[0][x] as tuples.

• image (np.array or cv2.image) – image will now be altered

• nlines (int) – number of lines to draw

• name (str) – name of the file without extension

• path (str) – the path will be set by default when DetectTrails debug params are set to
True. Otherwise supply your own.

• compression (int) – cv2.IMWRITE_PNG_COMPRESSION parameter from 0 to 9. A
higher value means a smaller size and longer compression time. Default value is 0.

lfd.detecttrails.processfield.fit_minAreaRect(img, contoursMode, contoursMethod,
minAreaRectMinLen, lwTresh, debug)

Fits minimal area rectangles to the image. If no rectangles can be fitted it returns False. Otherwise returns True
and an image with drawn rectangles.

1. finds edges using canny edge detection algorithm

2. finds all contours among the edges

3. fits a min. area rectangle to a contour only if:

a. both sides of the rect. are longer than minAreaRectMinLen

b. the ratio of longer vs, shorter rect. side is smaller than lwTresh

5. if no rectangles satisfying sent conditions are found function returns False and an empty (black) image

For more details on the parameters see documentation.

Parameters

• img (np.array) – numpy array representing gray 8 bit 1 chanel image.

• lwTresh (float) – ratio of longer/shorter rectangle side that needs to be satisfied

• contoursMode (cv2.const) – cv2.RETR_LIST should be used, but any of the contour
return modes

• contoursMethod (cv2.const) – cv2.CHAIN_APPROX_NONE should be used, but
any of the contour return modes supported by OpenCV can be used

2.8. Module: processfield 15

lfd Documentation, Release 1.0

• minAreaRectMinLen (int) – length, in pixels, of allowed shortest side to be fitted to
contours

lfd.detecttrails.processfield.dictify_hough(shape, houghVals)
Function converts from hough line tuples (rho, theta) into a dictionary of pixel coordinates on the image.

Parameters

• shape (tuple, list) – shape (dimensions) of the image. Used in order to scale Hough-
space coordinates into pixel-space coordinates

• houghVals (tuple, list) – (rho, theta) values of lines

Tip: Description of the algorithm’s implementation, execution parameters and performance is availible in

Bektesevic & Vinkovic, 2017, Linear feature detection algorithm for astronomical surveys - I. Algorithm
description

availible at arxiv.org/abs/1612.04748

This module contains all the basic functionality required to execute the linear feature detector interactively or in a
sequential batch-like processing setup.

The module requires that all the required data exists and is linked to as described in the setup section.

Central construct of this module is the DetectTrails class which keeps track of the execution parameters and
targeted data.

Broadly speaking the detection is a three step process:

• Removal of all known objects

• Detection of bright linear features

• Detection of dim linear features.

Each step is individually configurable through the params dictionaries of the class.

It is instructive to read the docstring of process_field() to see the steps algorithm does. For its implementation
or mode details see lfd.detecttrails.processfield module of the package.

The DetectTrails is not SDSS data agnostic but the processing functionality in lfd.detecttrails.
processfield is. That way this module can be used to run on other data given that the images are in FITS
format and that the catalog for each image is also given as a header table of a FITS file. There should be one such
fits catalog per image. Other catalog sources are possible but not impemented. It is instructive to see removestars
module which should contain examples of old deprecated CSV catalog functionality.

16 Chapter 2. Linear Feature detection

CHAPTER 3

Handling the results

3.1 Database and setup

The underlaying database schema looks something like:

------------------------------------ -------------------------
| events: | | frames: |
------------------------------------ -------------------------
* id (autoincrement)	<--		-	-* run PrimaryKey			
--------------------------------			-	-* camcol PrimaryKey			
	frame				-	-* filter PrimaryKey	
	* _run ForeignKey(frames)	-	---	--->	-	-* field PrimaryKey	
	* _camcol ForeignKey(frames)				* crpix1 Float		
	* _filter ForeignKey(frames)				* crpix2 Float		
	* _field ForeignKey(frames)				* crval1 Float		
--------------------------------			* crval2 Float				
	Point p1				* cd11 Float		
	* _x1, _cx1 Float				* cd12 Float		
	* _y1, _cy1 Float				* cd21 Float		
--------------------------------			* cd22 Float				
	Point p2				* t BasicTime		
	* _x2, _cx2 Float				------------		
	* _y2, _cy2 Float			------	-	events	
--------------------------------		------------					
	LineTime lt						
	* start_t Float						
	* end_t Float						

------------------------------------ -------------------------

Event describes the occurence of a single line on a Frame. A Frame is the SDSS frame on which at least one Event
(linear feature) was registered. If no Event is associated to a particular Frame, that Frame should be removed from the
DB.

17

lfd Documentation, Release 1.0

No event can exist without an being associated toa Frame. This constitutes a One-To-Many relationship from Frames
to Events and Many-To-One in reverse:

Events ->|------- Frame
Frame -|------<- Events

The awkward notation of the tables reflects the ORM aspects of the DB. Many of the attributes of the first table are
marked with an underscore and I would advise not to access them directly. Even though a lot of effort has been put
into assuring consistency of data no matter what is done to it, dealing directly with the values assumed understanding
of the SDSS’ CCD layout and usually comes with a loss of functionaity.

Instead many wrappers (i.e. Point, BasicTime etc.) are offered around those attributes that expand on their functionality
and ensure data consistency.

Relationships ‘frame’ and ‘events’ can be accessed as attributes of the class. This allows for simpler, more object
oriented access to immediatelly related objects.

Point is another special SQLAlchemy construct, a mutable composite. Point class ensures data consistency in an
interactive session while managing coordinate transformations between multiple coordinate systems.

The SQL type BasicTime was implemented to allow for more powerful astronomy focused date and time management.
It is essentially the SDSS modified TAI time stamp stored as a Float value in the DB but wrapped in Astropy’s Time
object.

By default, SQL database that will be used is SQLite but this is not mandatory. Other DBs can be used in its stead,
preferentially ones that enforce referential integrity to avoid loss of consistency.

Todo: MetaEvent - when an object passes over the entire CCD array it creates a lot of Events, but is still the same
object. A MetaEvent table linking multiple Events into a singular object is still required.

3.2 Connecting to the DB

The tables and metadata are registered on import. Connecting to the Db and acquiring an engine, session and connec-
tion is done similarly to how setup of detecttrails module works. All three are availible as module global variables, but
it is recommended that context managers found in utilities module are used.

1 import lfd
2 lfd.setup_results(URI="sqlite:///", dbpath="~/Desktop", name="foo.db", echo=False)

Again, as before this functionality is replciated and accessible from the module itself as well.

1 from lfd import results
2 results.connect2db(uri="sqlite:////home/user/Desktop/bar.db", echo=False)

If the DB at the desired URI does not exists a new empty DB is created and connected to instead. By default the con-
nection is attempted to URI: sqlite:////home/$USER/Desktop/foo.db. Additionally if the used DB is SQLite, PRAGMA
FOREIGN_KEYS is set to ON and echo is set to False.

If this is not flexible enough a DB can be created manually and the package’s engine and session, availible as attributes
of results module, can be set to the engine and session created with that DB directly.

lfd.setup_results(URI=’sqlite:///’, dbpath=’~/Desktop’, name=’foo.db’, echo=False)
Either connects to an existing DB (that has to be mappable by results package) or creates a new empty DB with
the required tables.

Parameters

18 Chapter 3. Handling the results

lfd Documentation, Release 1.0

• URI (str) – an URI to the DB. Defaults to ‘sqlite:///$USER_HOME/food.db’.

• dbpath (str) – location of a directory with an existing DB, or a directory where a new
DB will be created. Set to ‘~’ by default.

• name (str) – name of the existing, or newly created, DB. Default: ‘foo.db’

• echo (bool) – verbosity, Frue by default.

lfd.results.connect2db(uri, echo=False)
Connects to an existing DB or creates a new empty DB to connect too. The DB has to be mappable by the
results package.

Parameters

• URI (an URI used to connect to a DB. By default set to:) –
‘sqlite:///$USER_HOME/foo.db’.

• name (the name of the existing, or newly created, DB.
Default: 'foo.db') –

• echo (verbosity of the DB. False by default.) –

3.3 Examples

This is not a tutorial on the full usage of SqlAlchemy, DB’s or on how to write queries that return your desired data.
This tutorial just showcases some common practices recommended when using this package.

3.3.1 Basic access

Connect to a new database with and populate it with some test sample data (see create_test_sample())

1 from lfd import results
2 results.connect2db("~/Desktop/foo.db")
3 results.create_test_sample()

Results module will have, by now, bound a sessionmaker to the name Session. Session is used as a staging area for all
transactions towards the DB. It is recommended that Session is constructed at the beginning of any operation in which
DB access is expected and then immediately closed afterwards:

1 s = results.Session()
2 s.query(results.Event).all()
3 s.close()

3.3.2 Rolling back the changes

If a situation arises in which operation might fail a rollback should be issued

1 s = results.Session()
2 frame = results.Frame(2888, 1, "i", 139, 1, 1, 1, 1, 1, 1, 1, 1, 4412911)
3 s.add_all([frame, frame])
4 s.commit()
5

6 # will fail due to primary key restrictions - same frame added twice
7 # this renders the session unusable. To fix it issue a rollback:

(continues on next page)

3.3. Examples 19

lfd Documentation, Release 1.0

(continued from previous page)

8 s.rollback()
9 s.close()

3.3.3 Session context manager

Since open-commit-rollback-close is a very common pattern of use when inspecting data, results module has a context
manager (see session_scope()) for the Session that will return an opened session, commit the changes made to
objects while it was opened and automatically close it at the end of the block. If a problem was encountered, a rollback
is automatically issued.

1 with results.session_scope() as s:
2 s.add_all([frame, frame])

There is, in essence, nothing that can be done by managing your own Session that could not be done using the context
manager. The downside of context managers is the fact that objects fetched by, but not expunged from, the session
will not be availible after the session closes.

3.3.4 Adding and expunging objects

Expunging loads objects data and detaches it from the session, which allows it to be used after the session has closed.
Expunged objects can be manipulated and have their values changed but if they are not added back to the session the
changes will not persist.

1 with results.session_scope() as s:
2 frame = s.query(results.Frame).first()
3 # will raise an DetachedInstanceError
4 frame
5

6 with results.session_scope() as s:
7 frame = s.query(results.Frame).first()
8 s.expunge(frame)
9 # will not raise error

10 frame
11 # will raise an error
12 frame.events

If access to the object(s) relationships is needed then that relationship has to be expunged as well. Note: Event uses
Frame in its repr string, ergo it must not be printed or an error will be raised. In the same lines, expunging frame.events
will raise an error as it’s a list of Event objects, not an Event object itself.

1 # when working with single InstrumentedAttribute
2 with results.session_scope() as s:
3 event = s.query(results.Event).first()
4 s.expunge(event.frame)
5 s.expunge(event)
6 # will not raise error
7 event
8 event.frame
9

10 # loading the entire InstrumentedList has a workaround
11 with results.session_scope() as s:
12 frame = s.query(results.Frame).first()
13 _ = frame.events

(continues on next page)

20 Chapter 3. Handling the results

lfd Documentation, Release 1.0

(continued from previous page)

14 s.expunge_all()
15 # will not raise an error
16 frame
17 frame.events
18

19 # make a change and persist it in the DB
20 frame.events[0].x1 = 999
21 with results.session_scope() as s:
22 s.add_all(frame.events)
23 s.add(frame)

The frames workaround works by forcing non-lazy load of all associated events into the session - therefore expunge_all
will work. Constantly expunging can be a bit tiresome the deep_expunge() and deep_expunge_all() can
be used to expunge all first level relationships of given item/s, sometimes.

3.3.5 Querying

The main purpose of results package querying for events and inspection of their mutual relationships. There are two
ways queries can be issued, one was just shown in the examples above

1) Using the session scope

1 with results.session_scope() as s:
2 e = s.query(results.Event.run).first()
3 print(e)
4 print(e.frame)

2) Using one of the query methods

1 results.Event.query("frames.run==2888").first()
2 results.Frame.query("frame.t>4702185918").all()

Using Session and session_scope will make sure connections are opened or closed appropriately. Using <Table>.query
method will implicitly open a session and a connection and carry it along as long as it lives.

The second method has no particular real benefit, in fact it only has negatives, compared to the first, except that it’s
faster to type when interactively experimenting with the data in the terminal/idle/etc. Because it skips both the filter
and the session scope statements. It also accepts string-like SQL queries and performs an implicit join between the
tables so even the complicated queries can be written quickly. I discourage the use of this approach, except sometimes
in interactive use, for various reasons some of which are described bellow.

Attention: There are three different things to be aware of when using SQLAlchemy:

• the Engine,

• the Connection,

• and the Session.

There should be only one engine per DB URI. Depending on the type of connection pool, there can be 1 or many
Connections. There can always be many sessions.

The Engine is created and made availible after the call to the connect2db(), usually immediately after import-
ing the module. Session is a factory that will create a session when called (i.e. Session() from early examples).
Users are ALWAYS encouraged to use the Session because of its many advantages, but mainly because, as stated

3.3. Examples 21

lfd Documentation, Release 1.0

above, there can be many or just 1 Connection that is shared among many sessions. If not properly managed, and
it is hard to properly manage, errors occur. Alongside that very important fact, there are some other benefits:

• a Session is a factory, since the same factory will create our sessions, it is guaranteed that all sessions will
have the same configuration.

• Session manages its Connections, which otherwise can be hard to do

• automatic construction of SQL queries from OO like expressions

• guaranteed connection creation and release

• Identity map

• Unit of Work pattern

For more, see: https://docs.sqlalchemy.org/en/latest/orm/session_transaction.html

Queries can be ‘filtered’ to select results contrained by some parameters.

1 with results.session_scope() as s:
2 # Selecting all events from specific run
3 s.query(Event).filter(Event.run=2888).all()
4

5 # same query as previous section, example 2 - querying Event on Frame
6 # attribute requires join
7 query = s.query(lfd.results.Event).join(lfd.results.Frame)
8 fquery = query.filter(lfd.results.Frame.t > 4702185918)
9 f = fquery.all()

10

11 # a demo on why this is still better than querying tables directly
12

13 # Selecting all Events with known line start time
14 s.query(Event).filter(Event.start_t != None).all()
15

16 # selecting by using human readable data formats
17 fquery = query.filter(lfd.results.Frame.t.iso > '2009-09-27 10:06:10.430

→˓')
18 f = fquery.all()
19 results.deep_expunge_all(f, s)

Many attributes, like the BasicTime in Frame, have wrappers that allow them to be used more expressively and clearly
in the code. That is why their use is so heavily recommended. By using them you don’t have to know about the
implementation details and caveats. Counting the total number of Events in results DB:

1 s.query(Event).count()

These examples should cover most of the situations.

3.4 Common misuse patterns

3.4.1 DetachedInstanceError

1 with results.session_scope() as s:
2 e = s.query(results.Event).first()

(continues on next page)

22 Chapter 3. Handling the results

https://docs.sqlalchemy.org/en/latest/orm/session_transaction.html

lfd Documentation, Release 1.0

(continued from previous page)

3 e.run
4 >>> Traceback : sqlalchemy.orm.exc.DetachedInstanceError

• Incorrect use: session scope is meant to be used as a Unit of Work pattern, grouping multiple operations into a
single transaction. Outside of that session scope all additional database operations should not be possible.

• Inconsistency: Primary purpose of the reusults package is to offer users interactive introspection of data. If data
does not live outside a narrow scope it’s very hard to inspect interactively.

Solution is to do all required work in the scope, or expunge the items.

Todo: Create a auto-expunge scope. Very hard to generalize expunging, especially for circular definitions.

3.4.2 Passing values in/out

1 <in a script>
2 <some code>
3 e = results.Event.query().first()
4 <some additional code, perhaps even changing e>

Incorrect use: the session persist untill the session is automatically deleted. This should not be done as explained in
the Examples section. If only bits of data need to go out either store them somewhere, or query directly only for them
and not the whole row.

1 <in a script>
2 <some code>
3 with results.session_scope() as s:
4 e = s.query(results.Event).first()
5 x1, x2 = e.x1, e.x2
6 <some further code using x1, x2>
7

8 # or
9 with results.session_scope() as s:

10 x1, x2 = s.query(results.Event.x1, results.Event.x2).first()
11 <some further code using x1, x2>

or if modification of DB data is required:

1 <code calculating new values of x1, x2>
2 with results.session_scope() as s:
3 e = s.query(results.Event).first()
4 e.x1, e.x2 = x1, x2
5 <some further code>

3.5 Event

Event contains a single linear feature detected with all its measured parameters on a single Frame. Event is intended to
be used as the basic object on which work is done, as it encompases all information (times, frame, points. . .) required.
While that may be true, Event is still composed of multiple smaller movimg pieces with which it can have complex
relationships with so there are some things worth remembering when working with Event.

In short:

3.5. Event 23

lfd Documentation, Release 1.0

1. Non-prefixed coordinates are properties of the Event class (i.e. x1, y1. . .). The column names are prefixed with
an underscore (i.e. _x1, _cx1. . .)

2. always change column values through properties since many of them have additional sanity and caveats checking
imposed on them

3. Points interpret the coordinates in frame-referenced mode by default

4. Frame properties can not be changed through Event

5. If Frame is changed the changes won’t reflect on Event untill DB commit is made.

Longer explanation:

Point objects handle the coord conversions and maintain consistency among the coordinates during interactive work.
The table values are hot-wired to Point objects through composites and properties. It is easy to commit a mistake to
DB when working with column attributes directly and leave the DB in inconsistent state that can’t be fixed without
manually editing the value.

Point objects are dependent on the Frame object to provide a reference point for conversion between the two coordinate
systems. Frame should update the Event’s coordinates, but this is only enforced at instantiation time. Enforcing
consistency only at instantiation time lets us leave the well-defined CCD coord system into ccd gaps and then snap2ccd
before commiting. But at the same time is possible not to see the changed values update immediately when a Frame
attribute is changed. The coordinates will be updated once a DB commit is made. Additionally, the Event to Frame
relationship is many to one, which means there can be many events on a Frame. Updating a Frame requires reflecting
that change to all Events on it.

Point objects will issue warnings or errors if inconsistent situations arise. When a warning is issued, unless it’s clearly
understood and expected, the best course of action is to issue a rollback. Otherwise DB could be sent to an inconsistent
state.

The start/end times are stored in the DB in the SDSS-TAI format. There are some caveats when converting this time
to MJD. See: https://www.sdss.org/dr12/help/glossary/#tai

class lfd.results.event.Event(frame, x1=None, y1=None, x2=None, y2=None, cx1=None,
cy1=None, cx2=None, cy2=None, start_t=None, end_t=None, co-
ordsys=’frame’, **kwargs)

Class Event maps table ‘events’. Corresponds to a single linear feature detection. Contains the measured
properties of the feature and links to the Frame on which it was detected.

Parameters

• id (int) – PrimaryKey, autoincremental

• _run (int) – run id (ForeignKey)

• _camcol (int) – camcol id (ForeignKey)

• _filter (str) – filter id (ForeignKey)

• _field (int) – field id (ForeignKey)

• frame (sql.relationshitp) – Frame on which the linear feature was detected, a
many to one relationship to frames

• x1 (float) – x frame coordinate of point 1 of the linear feature

• y1 (float) – y frame coordinate of point 1 of the linear feature

• x2 (float) – x frame coordinate of point 2 of the linear feature

• y2 (float) – y frame coordinate of point 2 of the linear feature

• cx1 (float) – x ccd coordinate of point 1 of the linear feature

• cy2 (float) – x ccd coordinate of point 1 of the linear feature

24 Chapter 3. Handling the results

https://www.sdss.org/dr12/help/glossary/#tai

lfd Documentation, Release 1.0

• cx2 (float) – x ccd coordinate of point 2 of the linear feature

• cy2 – y ccd coordinate of point 2 of the linear feature

• p1 – see class Point composite Column mapping of x1, y1 to a point p1

• p2 – see class Point,composite Column mapping of x2, y2 to a point p2

• start_t – if possible, the time of the first detection of the linear feature on the frame, see
class BasicTime

• end_t – if possible, the time of the last detection of the linear feature on the frame, see
class BasicTime

• lt – not very usefull, see class LineTime

Examples

A Frame object reference is required. See lfd.results.frame.Frame for documentation. At minimum, supply the
Frame object and coordinates of two points defining a line:

>>> foo = Event(Frame, 1, 1, 2, 2)

By default the coordinates are considered to be in “frame” coordinate sys. Optionally specify the “ccd” as the
reference coordinate system:

>>> foo = Event(Frame, 1, 1, 2, 2, coordsys="ccd")

Optionaly all values could be supplied:

>>> foo = Event(Frame, 1, 1, 2, 2, 1, 1, 2, 2)

or on an example of a different CCD (4, ‘i’):

>>> foo = Event(f, 1, 1, 1, 1, 11377, 27010, 11377, 2710)

or verbosely:

>>> foo = Event(frame=Frame, x1=1, y1=1, x2=2, y2=2, cx1=1, cy1=1, cx2=2,
cy2=2, coordsys="frame")

Caution: When specifying coordinates in the ccd coordinate system be mindful of the fact that coordinates
(0, 0) in ‘ccd’ frame are upper left corner of the ccd array (camcol 1, filter ‘r’). It is not possible to have
CCD coordinates (1, 1) or (2, 2) except on the first chip of the CCD-array. If the Frame reference is with
respect to some other camcol and filter the ccd coordinates must, otherwise an Error will be raised.

It is possible to submit start or end time of the linear feature in any the following formats: Astropy Time object,
float number in mjd format, float number in sdss-tai format:

Astropy Time Object - supply an instantiated Astropy Time Object:

>>> st = astropy.time.Time(58539.0, format="mjd")
>>> et = astropy.time.Time("2019-02-25 00:00:10.000")
>>> foo = Event(frame, 1, 1, 2, 2, start_t=st, end_t=et)

Any Astropy Time supported format such as mjd, iso, isot, jd etc. . .

3.5. Event 25

lfd Documentation, Release 1.0

>>> foo = Event(frame, 1, 1, 2, 2, end_t=63072064.184, format="cxcsec")

or in the SDSS modified tai format:

>>> foo = Event(frame, 1, 1, 2, 2, start_t=4575925956.49, format="sdss-tai")

_findPointsOnSides(m, b)
Looking for an intersection of a horizontal/vertical borders with a line equation does not neccessarily return
a point within the range we’re looking for. It is easier and faster to do it manually. Each individual border
will be checked manually and if it satisfies, two coordinates (defining a Point) will be appended to a list.
Special cases of (0, 0) and (2048, 2048) will satisfy both border conditions and so will be duplicated in the
result. Interestingly, if working from ‘frame’ reference system it’s not neccessary to know which reference
frame we’re looking at.

Parameters

• m (float) – line slope

• b (float) – line y intercept

classmethod query(condition=None)
A class method that can be used to query the Event table. Appropriate for interactive work, not as appro-
priate for large codebase usage. See package help for more details on how the Session is kept open. Will
return a query object, not the query result.

If condition is supplied it is interpreted as a common string SQL. It’s sufficient to use the names of mapped
classes and their attributes as they will automatically be replaced by the correct table and column names.

Examples: Event.query().all() Event.query().first() Event.query(“run == 3”).all() Event.query(“Event.run
> 3”).all() Event.query(“Frame.t > 4412911072y”).all() Event.query(“events.cx1 > 10000”).all()
Event.query(“frames.filter == ‘i’”).all()

snap2ccd()
Snap the curent coordinates to the points of intersection of the reference frame CCD border and the linear
feature.

A negatively sloped 45° linear feature passes diagonally across the first CCD in the array (1, ‘r’), cutting
through both its corners. Such feature could be defined by P1(-1000, -1000) and P2(10000, 10000). Snap
will determine the two border points P1(0,0) and P2(2048, 2048).

3.6 Frame

Frame represents a single SDSS image. On a single CCD there can be up to 3 such frames simultaneously, slightly
overlapped on top and bottom edges. It is not clear to me how to resolve a Frame’s position within a CCD due to the
SDSS’ drift-scan method.

Frames can only exist within a CCD and CCD’s are placed in an fiter x camcol grid in the CCD plane where the
distance between camcols is only slightly less than the size of the CCD itself so that the gaps can be filled in by
another run.

A single Frame can contain many Events.

class lfd.results.frame.Frame(run, camcol, filter, field, crpix1, crpix2, crval1, crval2, cd11, cd12,
cd21, cd22, t, **kwargs)

Class Frame maps table ‘frames’. Corresponds to an SDSS frame. A frame is uniquely defined by the set (run,
camcol, filter, field). For in-depth see datamodel: https://data.sdss.org/datamodel/files/BOSS_PHOTOOBJ/
frames/RERUN/RUN/CAMCOL/frame.html

26 Chapter 3. Handling the results

https://data.sdss.org/datamodel/files/BOSS_PHOTOOBJ/frames/RERUN/RUN/CAMCOL/frame.html
https://data.sdss.org/datamodel/files/BOSS_PHOTOOBJ/frames/RERUN/RUN/CAMCOL/frame.html

lfd Documentation, Release 1.0

Parameters

• run (int) – run id (composite PrimaryKey)

• camcol (int) – camcol id (composite PrimaryKey)

• filter (str) – filter id (composite PrimaryKey)

• field (int) – field id (composite PrimaryKey)

• crpix1 (int) – x frame coordinate of the reference central pixel

• crpix2 (int) – y frame coordinate of the reference central pixel

• crval1 (float) – RA on-sky coordinates of the reference pixel (degrees)

• crval2 (float) – DEC on-sky coordinate of the reference pixel

• cd11 (float) – change of RA per column pixel

• cd12 (float) – change of RA per row pixel

• cd21 (float) – change of DEC per column pixel

• cd22 (float) – chage of DEC per row pixel

• t (BasicTime) – time of start of frame exposure

• events (sql.relationship) – list of all event(s) registered on this frame, a one to
many relationship to events

Example

Almost everything is not nullable so supply everything:

>>> foo = Frame(run, camcol, filter, field, crpix1, cprix2, crval1, crval2,
cd11, cd21, cd22, t)

i.e.

>>> foo = Frame(2888, 1, 'i', 139, 741, 1024, 119, 23, 1, 1, 1,
4575925956.49)

Time can be given as SDSS TAI or any of the other formats supported by Astropy Time Object. In the DB itself
it is always forced to the SDSS TAI time format.

classmethod query(condition=None)
Class method that used to query the Frame (‘frames’) table. Returns a Query object. Appropriate for
interactive work as Session remains open for the lifetime of the Query. See results package help to see
details.

If condition is supplied it is interpreted as an SQL string query. It’s suffiecient to use mapped class names
and their attributes as the translation to table and column names will be automaticall performed.

Example

Frame.query(“Frame.run > 2”).first() Frame.query(“field == 1 and filter == ‘i’”).all()
Frame.query(“Event.y1 > 2).all()

3.6. Frame 27

lfd Documentation, Release 1.0

3.7 Point

Point class provides a more comfortable interface for handling coordinates and coord transformations. Point is capable
of moving and setting of new coordinate values in any frame while maintaning consistency across all coordinates.

There are two coordinate systems to manage: ‘frame’ and ‘ccd’. Both are expressed in units of pixels and both have an
inverted y axis (increases from from top to bottom such that the y coordinate remains positive within the CCD array).

• ‘ccd’ coordinate system represents the whole CCD array, the area from (0, 0) to (MAX_W_CCDARRAY,
MAX_H_CCDARRAY). This area contains all CCDs. One CCD is defined by (camcol, filter). There are 6
camcols and 5 filters. A point anywhere in this area can be represented in the ‘ccd’ coordinate system. The
names of ‘ccd’ coordinates are (cx, cy).

• The ‘frame’ coordinate system is used to represent image-coordinates. These are the values measured by the
detecttrails package. The origin of the coordinate system is set to be reference CCD’s upper left corner. Coor-
dinates (x, y) change if the chosen reference CCD changes. The ‘frame’ coordinate system is a slight misnomer
as within each CCD there can be up to 3 frames-xxxx-xx-x-xxx.fits images at once. The frame dimensions
are 2048x2048 but images are cut to 1489px height with 139px of overlap between following images. A point
within any CCD can be represented in the ‘frame’ coordinate system.

To see the values defining both coordinate systems and how to convert between them look at the ccd_dimensions and
coord_conversion modules.

Warnings will be produced in an inconsistent situations to warn that, logically, the performed operations do not make
sense, but will not enforce consistency at all times.

3.7.1 Important Notes

Point is capable of interpreting the coordinates in two different context. One is as an absolute coordinate, usually
in ccd coordinate system, and the other as a frame-referenced coordinates in which case the coordinates remember a
reference to the frame they’re defined in. In the latter case it is possible to have ‘frame’ coordinates with numerically
determined values even when they are not within a CCD bounary, while in the former it is not because no reference
frame has been set. This can be bit confusing:

p = res.Point(3790, 5415, coordsys="ccd")
<lfd.results.point.Point(x=None, y=None, cx=3790, cy=5415)>

p2 = res.Point(-1, -1, camcol=2, filter="u")
<lfd.results.point.Point(x=-1, y=-1, cx=3790.820956, cy=5415.8870802)>

Both points reference approximately the same coordinate except that the frame-referenced Point understands which
frame’s (0, 0) point to use to calculate the ‘frame’ coordinates x and y from. The same point can be expressed
referenced from a different frame:

p2 = res.Point(-7584.64, 2707, camcol=4, filter="i")
<lfd.results.point.Point(x=-7584, y=2707, cx=3790.88, cy=5415.44)>

This makes more sense in the context of using the Point class to represent the linear feature in the Event class, but it
has some merrits as a feature on its own.

class lfd.results.point.Point(x=None, y=None, cx=None, cy=None, camcol=None, fil-
ter=None, coordsys=’frame’)

Provides a more comfortable interface for handling coordinates and coord transformations while maintaning
consistency across all coordinates.

Parameters

• x (float) – ‘ccd’ or ‘frame’ coordinate, depending on coordsys

28 Chapter 3. Handling the results

lfd Documentation, Release 1.0

• y (float) – ‘ccd’ or ‘frame’ coordinate, depending on coordsys

• coordsys (str) – ‘ccd’ or ‘frame’, designation of coordinate system

• inCcd (bool) – True if the current coordinate is within a CCD

• camcol (int) – the camera column of reference frame

• filter – the filter row of the reference frame

Example

>>> p = Point(10, 10, coordsys="ccd")
>>> p = Point(10, 10, camcol=2, filter='r')

To switch between coordinate system:

>>> p.useCoordSys('ccd')
>>> p.switchSys()

Check if current Point is in CCD or not

>>> p.inCcd

Moving the point can be by assignment or method. Method will try to resolve intended coordsys, or default to
current coordsys, but assignment always uses currentl coordsys. Mixing coord. sys. is possible:

>>> p.move(x=10, y=10)
>>> p.move(cx=100, y=10)
>>> p.y = 100

_check_sensibility(attr)
For a given attribute attr checks for a series of conditions that indicate an illogical operation or in some
cases operations that could leave an Event in an inconsistent state. Is not always correct, but that’s why it’s
a warning not Error.

Attrs Conditions
camcol, fil-
ter

if coord. sys. is ccd providing these makes no sense

frame if frame is sent as attr and self.inCcd is False the frame coordinate system coordinates
are not defined.

move(*args, **kwargs)
Move a point to different coordinates. Supports a more flexible way to change Point coordinates than direct
assignment. Checks are are performed and if the ingoing coordiantes do not match the coordsys, the Point
is NOT moved and a warning is issued. This makes move very oppinionated and annoying, but it forces
explicit statements about where and how the point is moved in the code.

Example

Implicitly resolves coordinates

3.7. Point 29

lfd Documentation, Release 1.0

>>> move(1, 1, "frame") # --> x=1, y=1
>>> move((1, 1), "frame") # --> x=1, y=1
>>> move(1, 1, "ccd") # --> cx=1, cy=1
>>> move((1, 1), "ccd") # --> cx=1, cy=1

Refuses to work without coordsys specification

>>> move(1, 1) # --> will always fail with error, no coordsys sent

Missmatched coordinates and coordinate systems issue warnings

>>> move(x=1, y=1, coordsys="ccd") # --> not moved, warning issued
>>> move(cx=1, cy=1, coordsys="frame") # --> not moved, warning issued

Partially specified coordinates will work only if coordsys is properly matched to the given coordiante
which must be explicitly specified

>>> move(1, "frame") # --> fails
>>> move(x=1, coordsys="frame") # --> moves the x coordinate only
>>> move(cx=1, coordsys="frame") # --> isses a warning, doesn't move x

Parameters

• **kwargs (dict) – x, y or cx, cy or coordsys and their values

• **kwargs – x, y or cx, cy and coordsys and their values

switchSys()
Switch to the other coordinate system (‘frame’-> ‘ccd’ and vice-versa). Not particularily useful as both
are usually accessible, but practical to state which coordinate system we are currently in.

useCoordSys(coordsys)
Use a particular coordinate system, either ‘frame’ or ‘ccd’.

Parameters coordsys (str) – coordsys designation, ‘frame’ or ‘ccd’

3.7.2 Dimensions & Constants

This module contains all neccessary constants to define a usable coordinate system on, and between, the images:

1 2 3 4 5 6 CAMCOLS
---...>
|x--------- x--------- x--------- x--------- x--------- x---------
|| | | |*P1| | | | | | | |

r|| CCD | | CCD | \ | CCD | | CCD | | CCD | | CCD |
|| | | | \| | | | | | | |
|---------- ---------- \--------- ---------- __---------- ----------
| \-->lin. feat ^ H_FILTER_SPACING
|x--------- x--------- x-\-------- x---------_|_
|| | | | | \ | | | ^

i|| CCD | | CCD | | * P2 | | CCD | | H_FILTER
|| | | | | | | | |
|---------- ---------- ----------- ----------_|_

u||<------>|<->|
| W_CAMCOL W_CAMCOL_SPACING
.

(continues on next page)

30 Chapter 3. Handling the results

lfd Documentation, Release 1.0

(continued from previous page)

.

. FILTERS (riuzg)
˘

Widths and heights were fixed to the official values and while the values of spaces in between the CCD dimensions
were availible in the literature they did not correspond exactly to calculable quantities - so they have been replaced by
these new values that seem to match the data better than the ones provided in literature.

CONSTANTS

W_CAMCOL [float] 2048, the width of one CCD, in pixels, corresponds to image width

H_FILTER [float] 2048, the height one one CCD, in pixels, images are cut to 1489px height with 139px of overlap
between them, there are usually 3 images in a CCD at a given time, although only 2 is also possible.

W_CAMCOL_SPACING [float] 1743.820956, the width the gap beween two camera columns

H_FILTER_SPACING [float] 660.4435401, the spacing between two rows of filters, these gaps can not be noticed
on the images but it takes some time for the sky to drift through them.

MAX_W_CCDARRAY [float] 21008.0, unrounded: 21007.10478, the lower edge of the CCD array, in pixels, if all
W_CAMCOL and W_CAMCOL_SPACINGS were added together

MAX_H_CCDARRAY : 12882.0, unrounded: 12881.77416, the lower edge of the CCD array, in pixels, if all
H_FILTER and H_FILTER_SPACINGS were added together

ARCMIN2PIX [float] 0.0066015625, arcminutes/pixel, pixel scale, corresponds to0.396 arcsec/pixel , but expressed
in minutes because of how values were given in the tables.

MM2ARCMIN [float] 3.63535503, detector image scale, mm/arcminute.

3.7.3 Coordinate Conversion Functions

exception lfd.results.coord_conversion.CoordinateConversionError(incoords,
outcoords,
msg=None,
*args)

Generic Error to be called when no sollution to coordinate conversions between CCD and frame coordinate
systems are not possible. A light wrapper around ArithmeticError.

Example

>>> raise CoordinateConversionError(incoords, outcoords)

Parameters

• incoords (tuple, list) – a set of ingoing to-be-converted coordinates

• outcoords (tuple, list) – set of (miss)calculated coordinates

• msg (str) – customize the error message

• *args (tuple, list) – any additional args can be supplemented and are appended to
the end of the error message

3.7. Point 31

lfd Documentation, Release 1.0

• are (cx, cy) CCD coordinates and outcoords are the frame
(incoords) –

• y, camcol, filter) coordinates or vice-versa. ((x,) –

lfd.results.coord_conversion.convert_ccd2frame(x, y)
Conversts the coordinate pair (x, y) from the CCD coordinate system to a frame coordinate system by applying
the following formulae:

x = cx - {camcol} * (W_CAMCOL + W_CAMCOL_SPACING)
y = cy - {filter} * (H_FILTER + H_FILTER_SPACING)

Where camcol and filter are iterated over untill a possible sollution is found. A sollution is possible if it is
contained within the width and height of a single CCD respective to its (0, 0) point in the frame coord. system.
Only one such sollution is guaranteed to exists.

lfd.results.coord_conversion.convert_frame2ccd(x, y, camcol, filter)
Converts from frame coordinates (x, y, camcol, filter) to CCD coordinates (cx, cy) via the following formulae:

cx = x + (camcol-1) * (W_CAMCOL + W_CAMCOL_SPACING)
cy = y + filter * (H_FILTER + H_FILTER_SPACING)

Filter can be sent as an integer or a string from {riuzg}.

lfd.results.coord_conversion.get_filter_from_int(filterint)
Provides translation between an integer row value of the filter and its string value where the top row is indexed
with a zero:

0 -> r
1 -> i
2 -> u
3 -> z
4 -> g

lfd.results.coord_conversion.get_filter_int(filter)
Provides the mapping between filter in string form and integer value based on the row the searched for filter is
in, starting from the top:

r -> 0
i -> 1
u -> 2
z -> 3
g -> 4

3.8 Time

Dealing with time-stamps has always been a challenging aspect of APIs. This module, hopefully, alleviates some of
issues wen dealing with timestamps by defining a new database type decorator that will wrap the awkward SDSS TAI
timestamps into a more pleasant OO interface by using Astropy Time objects.

class lfd.results.basictime.BasicTime(*args, **kwargs)
A class that will force storing time stamps in the SDSS TAI format and will force read-out of the timestamp
from the DB as an Astropy Time object.

Assignments, comparisons and other interactions will be the same as any other Astropy Time object.

32 Chapter 3. Handling the results

lfd Documentation, Release 1.0

impl
alias of sqlalchemy.sql.sqltypes.Float

process_bind_param(value, dialect)
Used to map value to the desired storage format within the DB. Expects an Astropy Time object. Converts
the time to SDSS TAI format for storage.

process_result_value(value, dialect)
Used to map read values from the DB to a format appropriate for interactive work. Expects an SDSS TAI
format float value and returns an Astropy Time object.

class lfd.results.basictime.LineTime(t_start, t_end, t_format=’tai’)
Used to map two BasicTime timestamps onto a singular object. Potential for expansion to a point where Events
can be queried on statistical properties of the duration of the linear feature and other such features.

Currently useless as many of the advanced interfaces are not implemented.

3.9 Utilities

Contains various utilities that expand and suplement the results module functionality and make it easier to work with.

lfd.results.utils.from_file(path)
Read a detecttrails formatted CSV file into a database.

lfd.results.utils.create_test_sample()
Creates a test sample of mock Events for testing, demonstration and learning purposes.

lfd.results.utils.session_scope()
Provide a transactional scope around a series of operations.

lfd.results.utils.pprint(objlist, *args, **kwargs)
Pretty-prints a list of Frame or Event objects in a table-like format.

Parameters

• short (bool) – True by default. The shortened format corresponds to:

run camcol filter field time x1 y1 x2 y2

if short is false, the long table format is printed:

run camcol filter field time x1 y1 x2 y2 cx1 cy1 cx2 cy2

• digits (int) – 2 by default. Controls the number of printed significant digits,

lfd.results.utils.deep_expunge(item, session)
For a given item, expunges all first order sql relationships from given session.

Parameters

• item (object) – any OO mapped sqlalchemy ORM object to be expunged completely
(Event, Frame etc..)

• session (sql.Session()) – active session from which we want to expunge the item
from

lfd.results.utils.deep_expunge_all(items, session)
For a given list of items, expunges all first order sql relationships from given session.

Parameters

3.9. Utilities 33

lfd Documentation, Release 1.0

• items (list(object) or tuple(object)) – set of OO mapped sqlalchemy
ORM object to be expunged completely (Event, Frame etc..)

• session (sql.Session()) – active session from which we want to expunge the items
from

In interactive use it is not very likely detecttrails will output unmanageable quantities of results. However, it LFD was
designed to be able to reprocess the entire SDSS database of images in which case the size of the results can become
hard to handle if left in its original CSV output format.

Main purpose of results package is to allow collating the default outputs and easy interactive inspection of the results.

It is written using SQLAlchemy, a Python SQL toolkit and a ORM. Because of this before beginning to work with the
module it is neccessary to create, or connect to, a database. See connect2db function from this module or the setup_db
from lfd library root on how to do that.

Results module is more than just a ORM interface to a DB. It is aware of the complex SDSS camera array geometry and
capable of translating raw result on-image coordinates to on-ccdarray coordinates without loss of consistency of the
data, it provides wrappers between the modified SDSS MJD and other time formats as well as various results-colating,
table-printing and database utilities.

34 Chapter 3. Handling the results

CHAPTER 4

Creating DQS cluster jobs

4.1 Setup

Createjobs module depends on run parameter files to solve targeted data id information. As described in Setup .par
files are found in the photo/redux directory to which the env. var. PHOTO_REDUX points. The minimal setup for
this module requires that PHOTO_REDUX variable is set. As before, this can be done in terminal, or by using the
provided functionality.

lfd.setup_createjobs(photoreduxpath=None)
Sets up the environmental path of PHOTO_REDUX only! Minimum environment required for certain createjobs
package functionality.

Parameters photoreduxpath (str) – The path to which PHOTO_REDUX env. var. will be set
to. Defaults to ‘~/Desktop/boss/photoredux’.

lfd.createjobs.setup(photoreduxpath=None)
Sets up the required environmental paths for createjobs module.

Parameters photoreduxpath (str) – The path to which PHOTO_REDUX env. var. will be set
to. Defaults to $BOSS/photoObj

4.2 Templates

By default the opened template is called “generic” and can be found in the same folder this module resides in. Since
it’s neccesary to change a lot of parameters, especially paths, template can be edited, or a new one can be provided in
its place.

Specifying template_path at Job class instantiation time will instruct the writer to substitute the template used.

When writing your own template, to avoid error reports, you have to specify all parameters in the new template that
this class can change. Parameters are uppercase single words, i.e: JOBNAME, QUEUE, NODEFLAG

35

lfd Documentation, Release 1.0

#!/usr/bin/ksh
#PBS -N JOBNAME
#PBS -S /usr/bin/ksh
#PBS -q QUEUE
#PBS -l nodes=NODEFLAG:ppn=PPN
#PBS -l walltime=WALLCLOCK,cput=CPUTIME

Not all enviroment paths in the template are changable throught this class. This was done to avoid confusion and
additional complexity of how working paths are handles, since on a cluster greater flexibility is provided by the
filesystem, that is usually tricky to nicely wrap in Python. Additionally, most of the used directories will often share
the same top directory path, while individual jobs will only differ at the level of particular target subdirectory inside
the targeted top directory. Such paths can be edited in place in the template, for example:

cp *.txt /home/fermi/$user/run_results/$JOB_ID/

Bellow is the full content of the generic template provided with the module:

#!/usr/bin/ksh
#PBS -N JOBNAME
#PBS -S /usr/bin/ksh
#PBS -q QUEUE
#PBS -l nodes=NODEFLAG:ppn=PPN
#PBS -l walltime=WALLCLOCK,cput=CPUTIME
#PBS -m e
#QSUB -eo -me

SAVEFOLDER=RESULTSPATH

cd ~
user=`whoami`
hss=`hostname`

if ["$PBS_ENVIRONMENT" != ""] ; then
TMPJOB_ID=$PBS_JOBID.$$
JOB_ID=${TMPJOB_ID%%[!0-9]*}.$$
ARC=`uname`

fi

nodefile=$PBS_NODEFILE
if [-r $nodefile] ; then

nodes=$(sort $nodefile | uniq)
else

nodes=localhost
fi

##Export paths user has to change as instructed by help(createjobs)
##fitsdm is the fits unpack path, can be anywhere
##BOSS should point to root boss folder with the files
##that copies the sdss tree:
boss/photo/redux/runList.par
boss/photoObj/301/..... photoObj files
boss/photoObj/frames/301/..... frames files
export FITSDMP=/scratch/$hss/$user/fits_dump
export BOSS=/scratch1/fermi-node02/dr10/boss
export PHOTO_REDUX=$BOSS/photo/redux
export BOSS_PHOTOOBJ=$BOSS/photoObj

(continues on next page)

36 Chapter 4. Creating DQS cluster jobs

lfd Documentation, Release 1.0

(continued from previous page)

##Make sure we have all the necessary folders in place
mkdir -p /scratch/$hss/$user
mkdir -p /scratch/$hss/$user/test_trails
mkdir -p /scratch/$hss/$user/fits_dump
mkdir -p /home/fermi/$user/$SAVEFOLDER/
mkdir -p /home/fermi/$user/$SAVEFOLDER/$JOB_ID

cd /scratch/$hss/$user/test_trails
mkdir -p /scratch/$hss/$user/test_trails/$JOB_ID

cd $JOB_ID
echo $nodes >nodes #contains node identifier
echo $PBS_EXEC_HOST >aaa2 #contains various host parameters
set >aaa3 #contains host parameters

cp /home/fermi/$user/run_detect/*.py* /scratch/$hss/$user/test_trails/$JOB_ID/
mkdir sdss
cp -r /home/fermi/$user/run_detect/sdss/* sdss/

source ~/.bashrc #get the right python interp.

COMMAND

##Copy the results back to fermi, delete what you don't need anymore
cp *.txt /home/fermi/$user/$SAVEFOLDER/$JOB_ID
#cp nodes /home/fermi/$user/$SAVEFOLDER/$JOB_ID
#cp a* /home/fermi/$user/$SAVEFOLDER/$JOB_ID

##Remove everything
rm a* nodes *py*
rm -rf sdss

4.3 Examples

The simplest one is just specifying the number of jobs you want. Jobs will then take the runs found in runlist.par (only
reruns 301 are considered, special reprocessings are not included), resolve the targeted data and create the jobs.

jobs = cj.Jobs(500)
jobs.create()
There are no runs to create jobs from.

Creating jobs for all runs in runlist.par file.

Creating:
765 jobs with 1 runs per job
Queue: standard
Wallclock: 24:00:00
Cputime: 48:00:00
Ppn: 3
Path: /home/user/Desktop/.../jobs

User will be notified about all important parameters that were set. Notice that the default save path, queue, wallclock,
ppn and cputime are set by default. All parameters can be sent as keyword arguments at instantiation.

Notice also that we specified 500 jobs to be created but 765 jobs were created instead. This is intentional. Jobs looks
for the next larger whole number divisor divisor to split the jobs between. It’s better to send in more jobs than to risk

4.3. Examples 37

lfd Documentation, Release 1.0

jobs failing.

Specifying certain runs by hand is possible by sending a list of runs of interest:

runs = [125, 99, 2888, 1447]
jobs = cj.Jobs(2, runs=runs)
jobs.create()
Creating:

2 jobs with 2 runs per job
Queue: standard

Wallclock: 24:00:00
Cputime: 48:00:00
Ppn: 3
Path: /home/user/Desktop/.../jobs

In both examples so far what is actually being written as a command that will be executed at job submission:

python3 -c "import detecttrails as dt; dt.DetectTrails(run=2888).process()"

It is possible to edit the command that is going to be executed. Specifying aditional keyword arguments to Jobs class
helps you utilize DetectTrails class run options. Sent kwargs are applied globaly across every job. It’s not, however,
possible to specify separate kwargs for each command individually.

runs = [125, 99, 2888, 1447]
jobs = cj.Jobs(2, runs=runs, camcol=1)
jobs.create()

would create 2 jobs with 2 runs per job as the above example. The invocation of the DetectTrails class would now look
like:

python3 -c "import detect_trails as dt; dt.DetectTrails(run=125,camcol=1).process()"

Which would process only the camcol 1 of run 125. Actual written job#.dqs file is not as readable/friendly as above
examples. Another example:

jobs = cj.Jobs(2, runs=runs, camcol=1, filter="i")

would execute 2 jobs with following 2 calls to DetectTrails class:

python3 -c "import detect_trails as dt;
dt.DetectTrails(run=125,camcol=1,filter=i).process()"

See help on DetectTrails class for a complete set of allowable options.

To further fine tune your job behaviour it’s possible to change the default execution command to supply additional
execution parameters. By default keyword argument command is set to:

python3 -c "import detecttrails as dt; dt.DetectTrails($).process()"

Where “$” sign gets automatically expanded by the writer module. There should also ALWAYS be a “$” character
present in a command. “$” replaces arguments of DetectTrails class at instantiation, sort of as **kwargs usually do.
Example:

jobs = cj.Jobs(2, runs=runs, camcol=1, filter="i")
jobs.command = 'python3 -c "import detecttrails as dt;' +\\

'x = dt.DetectTrails($);' +\\
'x.params_bright[\'debug\'] = True;' +\\

(continues on next page)

38 Chapter 4. Creating DQS cluster jobs

lfd Documentation, Release 1.0

(continued from previous page)

'x.process()"\n'
jobs.create()

which will get written as:

python3 -c "import detecttrails as dt; +\\
x = dt.DetectTrails(run=125,camcol=1,filter=i); +\\
x.params_bright['debug'] = True; +\\
x.process()"

Again, the actual written command in the job#.dqs file would not look as user friendly and readabe as it is here. In the
above example notice that quotation marks are trice nested as follows:

' (" (\' \') ") '

where:

• outter ‘: declares a python string, this string becomes the command attribute of Jobs class.

• inner “: encloses the string that will be executed by the python -c command in the actual job#.dqs file.

• innermost ’: mark a new string that will get interpreted as an argument inside the string you’re sending to python
-c.

This complication is here because the command has to be sent as a string therefore the quotation marks used inside
should not escape the outsidemost quotations. General usefull guidelines:

1) the outter-most quotation as single ‘’ marks

2) everything past “-c” flag in double quotation marks “”

3) further quotation marks should be escaped single quotations.

4) A EXPLICIT newline character should ALWAYS be present at the end.

Tip: It is usually much simpler to declare the command as a multiline python comment by using the triple-quote
mechanism:

command = """python3 -c "import detecttrails as dt;
x = dt.DetectTrails($);
x.params_bright['debug']=True;
x.process()

"""
jobs.command = command
jobs.create()

because there is no need to escape any of the special characters at all.

Same applies when executing a custom command for all runs:

jobs = cj.Jobs(500)
jobs.command = 'python3 -c "import detecttrails as dt;' +\\

'x = dt.DetectTrails($);' +\\
'x.params_bright[\'debug\'] = True;' +\\
'x.process()" \n\'

jobs.create()

would produce jobs for all runs as in the first usage case, where each job would execute the following command(s):

4.3. Examples 39

lfd Documentation, Release 1.0

python3 -c "import detecttrails as dt; +\\
x = dt.DetectTrails(run=273); +\\
x.params_bright['debug'] = True; +\\
x.process()"

To see the list of all changable execution parameters of DetectTrails class see the tables of detection parameters
described Table of removestars parameters, Table of bright parameters, and Table of dim parameters.

Former approach covers most basics about how to get the most out of DetectTrails class on QSUB. However, described
approaches still do not let you create jobs per frames. Sollution for this problem is to send in a list of Event or Frame
objects. Read docs of results package to see how to instatiate those objects. Using them with createjobs module is
quite straight-forward.

mixing them in the same list/tuple is allowed
r = [Event, Event, Frame, Event...]

jobs = cj.Jobs(5, runs=r)
jobs.create()

Creating:
6 jobs with 1372 runs per job

Queue: standard
Wallclock: 24:00:00
Cputime: 48:00:00
Ppn: 3
Path: /home/user/Desktop/.../jobs

This time it’s not runs you’re executing but frames, therefore you can let a larger number of them per job; i.e. the
invocation of DetectTrails now looks like:

python3 -c "import detect_trails as dt;
dt.DetectTrails(run=125,camcol=1,filter='i', field=69).process()"

4.4 Jobs

Job class is the interface to the writer which stores all parameters required to sucessfully populate the templte. It
also wraps additional functionality such as directory and script IO that will try and prevent overwriting of previously
created scripts.

class lfd.createjobs.createjobs.Jobs(n, runs=None, template_path=None, save_path=None,
queue=’standard’, wallclock=’24:00:00’,
ppn=’3’, cputime=’48:00:00’, pernode=False,
command=’python3 -c "import detect-
trails as dt; dt.DetectTrails($).process()"n’,
res_path=’run_results’, **kwargs)

Class that holds all the important functions for making Qsub jobs.

Template is located inside this package in “createjobs” folder under the name “generic”. Location where final
results are saved on Fermi cluster by default is:

/home/fermi/$user/$res_path/$JOB_ID.

Can be changed by editing the template or providing a new one. One can also be provided in string format as a
kwargs named “template”.

Parameters

40 Chapter 4. Creating DQS cluster jobs

lfd Documentation, Release 1.0

• n (int) – number of jobs you want to start.

• save_path (str) – path to directory where jobs will be stored. By default set to ~/Desk-
top/createjobs

• res_path (str) – path to subdirectory on cluster master where results will be copied
once the job is finished.

• template_path (str) – path to the desired template

• template (str) – a full template text as a string

• queue (str) – sets the QSUB queue type: serial, standard or parallel. Defaults to stan-
dard. Your local QSUB setup will limit wallclock, cputime and queue name differently than
assumed here.

• wallclock (str) – set maximum wallclock time allowed for a job in hours. Default:
24:00:00

• cputime (str) – set maximum cpuclock time allowed for a job in hours. Default:
48:00:00

• ppn (str) – maximum allowed processors per node. Default: 3

• command (str) – command that will be invoked by the job. Default: python -c “im-
port detect_trails as dt; dt.DetectTrails($).process()” where “$” gets expanded depending on
kwargs.

• **kwargs (dict) – named parameters that will be forwarded to command. Allow for
different targeting of data. See documentation for examples

• runs – if runs are not specified, all SDSS runs found in runlist.par file will be used. If runs
is a list of runs only those runs will be sorted into jobs. If runs is a list of Event or Frame
instances, only those frames will be sorted into jobs. See docs on detailed usage.

create()
Creates job#.dqs files from runlst. runlst is a list(list()) in which inner list contains all runs per job. Length
of outter list is the number of jobs started. See class help.

getAllRuns()
Returns a list of all runs found in runlist.par file.

makeRunlst(runs=None)
Create a runlst from a list of runs or Results instance. Recieves a list of runs: [N1,N2,N3,N4,N5. . .] and
returns a runlst:

[
(N1, N2...N(n_runs / n_jobs)) # idx = 0
...
(N1, N2...N(n_runs / n_jobs)) # idx = n_jobs

]

Runlst is a list of lists. Inner lists contain runs that will be executed in a single job. Lenght of outter list
matches the number of jobs that will be started, f.e.:

runls = list(
(2888, 2889, 2890)
(3001, 3002, 3003)

)

will start 2 jobs (job0.dqs, job1.dqs), where job0.dqs will call DetectTrails.process on 3 runs: 2888, 2889,
2890.

4.4. Jobs 41

lfd Documentation, Release 1.0

If (optionally) a list of runs is supplied a run list will be produced fom that list, instead of the runs attribute.

lfd.createjobs.writer.get_node_with_files(job, run)
Deprecated since version 1.0.

Reads lst-lnk file to retrieve nodes on which fits files of run are stored. Returns the node number. In cases where
error occured while reading node number returns the first, “01”, node.

lfd.createjobs.writer.writeJob(job, verbose=True)
Writes the job#.dqs files. Takes in a Jobs instance and processes the “generic” template replacing any/all key-
words using values from Jobs instance. For each entry in runlst it creates a new job#.dqs file, which contains
commands to execute detecttrails processing for each entry of entry in runlst.

Parameters

• job (lfd.createjobs.Job) – Job object from which job scripts are to be created.

• verbose (bool) – deprecated to alleviate clutter

Note: There is a GUI interace for this module that might be easier to understand, at a minimal cost of functionality
loss.

Note: This package was written for the Fermi cluster at the Astronomical Observatory Belgrade but it should be easy
to adapth to any other QSUB cluster.

Used to create .dqs files necessary to run a job on QSUB system. Main idea was to create a class that can take care
of writing large job(s) without having to resort to manually editing the templates or produced job script(s) post-fact.
Should alleviate a lot of work and unavoidable confusion, when such jobs are created manually.

Jobs are created through a Job instance, holding all required parameters. Job instance uses a writer to populate a
template of *.dqs scripts that can then be submitted to the cluster interface.

42 Chapter 4. Creating DQS cluster jobs

CHAPTER 5

GUIs

5.1 Verifying results

5.1.1 Image Checker

ImageChecker.__init__()
There are several configurable parameters that are imporant for this class:

• resize_x - the reduction factor describing how much has the width been reduced from the original to the
displayed image.

• resize_y - the reduction factor describing how much has the height reduced between the original and
displayed image.

Optionally you can rebind the key functionality or change the color scheme of the table in the top right by
editing the TopRight Frame of the rightFrame. Additionally, the displayed keys in the TopRight Frame are
editable through that class.

class lfd.gui.imagechecker.imagechecker.ImageChecker
GUI app that allows for visual inspection of Events. To run the app instantiate the class and run its mainloop
method or invoke run function located in this module.

The App itself does not manage the data. Data loading and management is handled by the EventBrowser class
stored in self.data attribute.

The GUI consits of 2 Frames - left and right. Left frame is used to display information on the Event and the right
hand side displays the image representation of the Event if availible. GUI binds the following shortcut keys:

• <Left> - move to previous image without saving any changes

• <Right> - continue to the next image without saving any changes

• <Up> - continue to the next image but set the verified and false positive flags of the current Event to True
and False respectively. Persist the changes to the DB

• <Down> - continue to the next image but set the verified and false positive flags of the current Event to
True and True respectively and persist the change to the DB

43

lfd Documentation, Release 1.0

• <LMB> - when clicked on the image will move the first point of the linear feature to that location and
persist the changes to the database

• <RMB> - when clicked on the image will move the second point of the linear feature to that location and
persist the changes to the database

The colors in the data table on the right frame indicate the following:

• Yellow - the Event was never visually inspected

• Green - the Event was visually inspected and confirmed as true

• Red - the Event was visually inspected and was determined to be a false detection

failedUpdate()
Redraw left and right Frames and display their failure screens.

initGUI()
Will initialize the GUI for the first time by prompting user for the location of the Database to connect
to and the location of the images. The order of operations here is not particulary important because the
update function will be called to clean and redisplay everything on the screen.

initImages()
Prompt user for the directory containing all the images in the DB.

initResults()
Prompt user for the database file from which Events will be read.

update()
Redraw right and left Frames. The order is important, updating left frame before loading new event will
not load the data required to draw the line over the canvas.

class lfd.gui.imagechecker.leftframe.LeftFrame(parent)
Represents the left frame of the GUI. Contains the Canvas within which the image is displayed and additional
functionality that allows the users to chage the line parameters, and persist those changes to the DB. The fol-
lowing mouse actions are bound to the canvas:

• <Button-1> - on click of the left mouse button (LMB) will bind the current coordinates of the mouse pointer
and convert the on-canvas coordinates to the frame-coordinate system using the resize_x and resize_y
resizing reduction factors defined in the root class of the app. These converted coordinates are then set as
a new x1, y1 coordinates of the p1 Point of the Event.

• <Button-3> - on right mouse button (RMB) click records the coordinates of the pointer, scales them to
frame coord. sys. and persists the change as the x2, y2 coordinates of p2 Point of the Event.

drawline(delete=False)
Draws the line defined by the current Event’s Points p1 and p2. If delete is set to True then it will delete
any existing line. It is important that the resize scaling factors are correctly set.

failedImageLoadScreen()
Clears the canvas and displays the Error image.

lmb(event)
Callback, records and updates the x1, y1 coordinates of the Event.

rmb(event)
Callback, records and updates the x2, y2 coordinates of the Event.

update()
Updates the canvas and handles the errors.

updateLine(sx, sy, which)
Function that will scale the canvas coordinates to correspond to the frame-coordinate system and sets the

44 Chapter 5. GUIs

lfd Documentation, Release 1.0

new coordinates as the p1 or p2 coordinates of the Event. It is important that the resize scaling factors used
in the App are correct if the output is to be trusted.

Parameters

• sx (int) – x coordinate in canvas coordinate system

• sy (int) – y coordinate in canvas coordinate system

• which (str) – used to determine whether the coordinates belong to point 1 or point 2 of
the Event. Either ‘1’ or ‘2’.

class lfd.gui.imagechecker.rightframe.RightFrame(parent)
Represents the right part of the frame containing all the action buttons and displaying the data of he Event from
the database. The right frame is split into two sub-frames one used to display the Event in question and the other
one containing all the action elements (next, true, false, previous, find, change data source etc.)

failedEventLoadScreen()
Redraws the right frame displaying appropriate error messages in case of failure.

update()
Calls the update methods of each subframe in the correct order and handles failures.

class lfd.gui.imagechecker.topright.TopRight(parent)
Top right part of the right frame. Used to display the data on currently selected Event.

Contains several customizable attributes such as:

• unverified_color- the color to display when the Event’s verified flag is False (DarkGoldenrod1 by default)

• falsepositive_color - the color to display when the Event is verified as false positive (red by default)

• positive_color - color to display when the Event is verified as a positive detection (DarkOliveGreen3)

• displayKeys - keys that will be displayed in the information table of the Event. Any valid column name of
Event is accepted, by default will be: [run, camcol, filter, field, frame.t.iso]

updateImageData()
Clears the currently displayed table, and draws a new table displaying the data of currently loaded Event.
If there is no Event currently loaded, raises an IndexError (since the index of current Event is None).

class lfd.gui.imagechecker.botright.BottomRight(parent)
Bottom right Frame of the RightFrame of the app. This section contains all the active elements of the app, such
as Buttons for selecting the DB, directory of images, moving to the next or previous image or changing the DB
entries by verifying their truthfulness.

false(*args)
Callback that sets the false_positive attribute of the current Event to True, persists the change to the DB,
moves the current data index to the following data instance and updates the whole GUI.

nextimg(*args)
Callback function that moves the current data index to the following one and updates the whole GUI.

previmg(*args)
Callback function that moves to the previous data instance and updates the whole GUI.

search()
Opens a new window that allows user to input the run, camcol, filter and field designations of the Frame
they would like to jump to. The search will jump to the first Event with the correct Frame designation.

As there can be multiple Events on the same Frame, user can provide the ordinal number of the Event they
are interested in.

5.1. Verifying results 45

lfd Documentation, Release 1.0

selectimages()
Re-initializes the apps selection of directory containing images and refreshes the whole GUI.

selectresults()
Re-initializes the apps selection of the Event database and refreshes the whole GUI.

true(*args)
Callback that sets the false_positive attribute of the current Event to False, persists the change to the DB,
moves the current data index to the following data instance and updates the whole GUI.

5.1.2 Data Browser

Data Browsers are classes that maintain index consistency between two Indexers and provide the functionality re-
quired to browse two indexers simultaneously. Since the source databases for results and images could be completely
disjointed this means one of the Indexers is designated as a primary indexer. Browsing follows primary indexer while
the secondary indexer is queried for the corresponding item.

class lfd.gui.imagechecker.databrowser.Browser(primaryIndexer=None, secondaryIn-
dexer=None)

Browser is the generic abstraction of a browser that iterates over the pairs of (primary, secondary) items. Given
objects capable of itemizing, i.e. indexing, the primary and secondary items Browser will ensure the consistency
of the browsing index between the two indexers. For example, if we wanted to browse to the next value of
primary indexer the following actions are performed:

1) invokes the next method of the primary indexer

2) identifies that item

3) invokes the get method of the secondary indexer.

This is neccessary since the sets of items indexed by primary and secondary can be completely disjoint.

The attributes and methods of this class are mainly private or hidden. By inheriting this class and declaring a
dictionary class attribute “rename” on that class it is possible to rename the methods of this class into something
more appropriate such as assigning the name ‘images’ to ‘_primary’ when dealing with ImageBrowser class etc.

Parameters

• primaryIndexer (lfd.gui.imagechecker.Indexer) – the primary Indexer
(EventIndexer or ImageIndexer)

• secondaryIndexer (lfd.gui.imagechecker.Indexer) – the secondary In-
dexer

get(run, camcol, filter, field, which=0)
Given frame specifiers (run, camcol, filter, field) select and advance both indexers to the item if possible.
Relationship from primary to secondary indexer can be many to one, so providing ‘which’ allows selection
on a particular secondary of interest.

getNext()
Advance the index of the primary by a step and then find if the secondary contains the newly selected
object.

getPrevious()
Regress the index of the primary by a step and then find if the secondary contains the newly selected object.

class lfd.gui.imagechecker.databrowser.EventBrowser(resdbURI=None,
imgdbURI=None)

A Browser which primary set of items to browse through are Events. For each Event indexed it will attempt
to find a corresponding image. This Browser guarantees that all Events will be Browsed, but not all indexed
images will be browsed through.

46 Chapter 5. GUIs

lfd Documentation, Release 1.0

Parameters

• resdbURI (str) – URI of the database of Events (i.e. results)

• imgdbURI (str) – URI of the database of Images

event
The item, of the primary indexer, pointed to by the current index.

events
The items indexed by the primary indexer.

image
The item, of the secondary indexer, pointed to by the current index.

images
The items indexed by the secondary indexer.

initEvents(URI)
Instantiate the primary indexer.

initImages(URI)
Instantiate the secondary indexer.

class lfd.gui.imagechecker.databrowser.GenericBrowser
GenericBrowser metaclass offers the ability to rename the values of attributes being browsed through into some-
thing more appropriate. In the case of an EventBrowser for example that would be:

primary --> Event
secondary --> Images

and the other way around for ImageBrowser. This is completely superfluous and here more because I wanted to
tr something out than out of any real neccessity.

class lfd.gui.imagechecker.databrowser.ImageBrowser(resdbURI=None,
imgdbURI=None)

A Browser which primary set of items to browse through are Images. For each Image indexed it will attempt to
find a corresponding Event. This Browser guarantees that all Images will be browsed, but not all indexed events
will be browsed through.

Parameters

• resdbURI (str) – URI of the database of Events (i.e. results)

• imgdbURI (str) – URI of the database of Images

event
The item, of the secondary indexer, pointed to by the current index.

events
The items indexed by the secondary indexer.

image
The item, of the primary indexer, pointed to by the current index.

images
The items indexed by the primary indexer.

initEvents(URI)
Instantiate the secondary indexer.

initImages(URI)
Instantiate the primary indexer.

5.1. Verifying results 47

lfd Documentation, Release 1.0

5.1.3 Indexers

Indexers establish order amongs items

class lfd.gui.imagechecker.indexers.EventIndexer(URI=None)
Indexes Events database providing a convenient way to establish order among the items.

_getFromFrameId(run, camcol, filter, field, which=0)
Queries the database for the Event and returns it. In case multiple Events correspond to the same frame
identifier, supplying which selects one of the returned results.

The returned Event is expunged from the database session.

Parameters

• run (int) – run identifier

• camcol (int) – camcol identifier

• filter (str) – string identifier

• field (int) – field identifier

• which (int) – if multiple Events are returned, which one in particular is wanted

_getFromItemId(eventid)
Given an unique Event id queries the database for the row and returns it as an appropriate object. The
returned object is expunged from the database session.

Parameters eventid (int) – unique id of the desired Event

commit()
Add the object back to the session and commit any changes made to it.

event
Returns the event pointed to by the current index.

initFromDB(uri)
Connects to a database and indexes all Events therein.

class lfd.gui.imagechecker.indexers.ImageIndexer(URI=None)
Indexes Image database providing a convenient way to establish order among the items.

_getFromFrameId(run, camcol, filter, field, which=0)
Queries the database for the Image and returns it. In case multiple Imagess correspond to the same frame
identifier, supplying which selects one of the returned results.

The returned Image is expunged from the database session.

Parameters

• run (int) – run identifier

• camcol (int) – camcol identifier

• filter (str) – string identifier

• field (int) – field identifier

• which (int) – if multiple items are returned, which one in particular is wanted

_getFromItemId(imageid)
Given an unique image id queries the database for the row and returns it as an appropriate object. The
returned object is expunged from the database session.

Parameters eventid (int) – unique id of the desired Event

48 Chapter 5. GUIs

lfd Documentation, Release 1.0

image
Returns the image pointed to by the current index.

initFromDB(uri)
Connects to a database and indexes all Images therein.

class lfd.gui.imagechecker.indexers.Indexer(items=None)
Generic indexer of items in a database. Given a list of items or a database connection, session and table will
produce an order-maintained list of item ids. Indexer allows us to move through the rows of the db in sequentiall
or non-sequential manner while loading the currently pointed to object dynamically from the database.

Parameters items (list, tuple) – list of unique ids of the objects from the db

current
current position of the index

Type int

maxindex
the maximal value of the index

Type int

items
unique ids of DB rows, the item[current] points to the currently selected row of the DB

Type list

item
currently selected dynamically loaded from the DB as an object

Type object

_Indexer__step(step)
Makes a positive (forward) or negative (backwards) step in the list of items and loads the newly pointed to
object.

_getFromFrameId(*args, **kwargs)
Given a frame identifier (run, camcol, filter, field), and possibly which, queries the database for the object
and returns it. Should be implementation specific perogative of classes that inehrit from Indexer

_getFromItemId(*args, **kwargs)
Given an unique object id queries the database for the row and returns it as an appropriate object. The
returned object is expunged from the database session.

get(run=None, camcol=None, filter=None, field=None, which=0, itemid=None)
If nothing is provided, jumps to the current index and loads the db row into item. If frame identifiers (run,
camcol, filter, field) are given loads the object from the database and jumps the index to its position. If
itemid is provided, loads the desired object and jumps to its index.

In some cases the frame identifiers can be shared among multiple rows (i.e. multiple Events on a Frame)
in which case providing ‘which’ makes it possible to select a particular item from the returned set.

The selected item is expunged from the session.

Parameters

• run (int) – run identifier

• camcol (int) – camcol identifier

• filter (str) – string identifier

• field (int) – field identifier

5.1. Verifying results 49

lfd Documentation, Release 1.0

• which (int) – if multiple items are returned, which one in particular is wanted

• itemid (int) – unique id of the desired item

goto(index=None, itemid=None)
If an ‘index’ is provided jumps to the given index. If ‘itemid’ is given, jumps to the index of the provided
item id. If neither are given reloads the current item.

initFromDB(dbURI)
Connects to the given DB URI and indexes wanted rows from it.

next()
Makes a step forward and retrieves the item.

previous()
Makes a step backwards and retrieves the item.

skip(steps)
Skips ‘steps’ number of steps. Value of ‘steps’ can be positive or negative indicating forward or backward
skip respectively.

5.1.4 Utilities

lfd.gui.imagechecker.utils.create_imageDB(filenamestr, saveURI, echo=False)
Finds all paths to matching files given by filenamestr, extracts their frame identifiers and stores them in a database
given by saveURI.

Examples

Filenamestr can contain wildcards, f.e.:

>>> create_imageDB("/path/to/dir_containing_subdirs/*/*.png",
"sqlite:///foo.db")

will find all /path/to/dir/subdirs/frame-run-camcol-filter-frame.png styled filenames and add their frame identi-
fiers and paths to foo DB.

Parameters

• filenamestr (str) – wildcarded string that will be used to match all desired image files

• saveURI (str) – URI containing type and location of the images database

lfd.gui.imagechecker.utils.eventId2Filename(eventid, type=’.png’)
From an event id constructs a SDSS styled filename via frameId2Filename function.

Parameters

• eventid (int) – unique Event identifier

• type (str) – file extension (.png, .jpeg etc. . .)

lfd.gui.imagechecker.utils.eventId2FrameId(eventid)
Returns frame identifiers (run, camcol, filter, field) for an Event identified by given event id.

Parameters eventid (int) – unique Event identifier

lfd.gui.imagechecker.utils.filename2frameId(filename)
From an SDSS style filename of the:

50 Chapter 5. GUIs

lfd Documentation, Release 1.0

frame-{filter}-{run:06d}-{camcol}-{field:04}.fits.{type}

format extracts frame identifiers (run, camcol, filter, field).

Parameters filename (str) – just the filename, no prepended path

lfd.gui.imagechecker.utils.filepath2frameId(filepath)
From a filepath extracts SDSS frame identifiers. Filepath must be of the followng format:

/path/to/frame-{filter}-{run:06d}-{camcol}-{field:04}.fits.{type}

Parameters filepath (str) – path-like string

lfd.gui.imagechecker.utils.frameId2Filename(run, camcol, filter, field, type=’.png’)
Translates between frame identifiers and SDSS style filename of the:

frame-{filter}-{run:06d}-{camcol}-{field:04}.fits.{type}

format, where type represents the .png, .jpg or other extensions.

Parameters

• run (int) – run identifier

• camcol (int) – camcol identifier

• filter (str) – string identifier

• field (int) – field identifier

• type (str) – file extension (.png, .jpeg etc. . .)

ImageChecker is a image browser designed to speed up results
verification.

After processing large ammount of data, depending on the selected detection parameters, there would be none to a
lot of false positive detections in the dataset. These potential detections would need to be manually checked in some
situations to ensure the quality of the results.

The frames of interest, i.e. the results or its subset, would be converted, keeping in mind to scale and preprocess the
images appropriately for their intended use, to one of the supported formats (png, jpeg, gif, ppm/pgm) and their frame
identifiers and paths stored in a database. ImageCheker would connect to the results and images database and would
be able to browse through keyed either on the images, or detected events.

While this is possible to do on the cluster itself, using X forwarding, it is not recomended due to large potential latency
and possibly long image download times. For fastest possible verification it is best to run ImageChecker locally.
ImageChecker was designed to facilitate fast verification and correction of results and was not intended to be, yet
another, FITS viewer.

To run the GUI import the package and use its run method or invoke the mainloop of the app itself:

5.1. Verifying results 51

lfd Documentation, Release 1.0

import lfd
lfd.gui.imagechecker.run()

or optionally if one wants to potentially change default parameters
import lfd.gui.imagechecker as imgchkr
app = ImageChecker()
app.mainloop()

The user should be greeted with popup windows instructing them to select the results database first and the image
database second. After successful connections to the databases were made (notice that there is no setup required as
described in the Database and setup, the values are inferred at startup time from the selected DB’s instead) user will
be able to browse images using directional keys and a mouse.

5.2 Creating DQS jobs

52 Chapter 5. GUIs

lfd Documentation, Release 1.0

To run the GUI import the package and use its run method or invoke the mainloop of the app itself:

import lfd
lfd.gui.jobcreator.run()

or optionally if one wants to potentially change default parameters
import lfd.gui.imagechecker as imgchkr
app = JobCreator()
app.mainloop()

JobCreator is a GUI interface to createjobs module. It provides an easier to manage graphical interace to the function-
ality contained in the createjobs module and has additional practical features such as in-place template editing.

class lfd.gui.jobcreator.rightframe.RightFrame(parent)
RightFrame of the jobcreator gui. Contains the template from which jobs will be created. The template is not
editable unless its state is changed by the eddittemplate function found in the leftbotframe module.

class lfd.gui.jobcreator.leftframe.LeftFrame(parent)
LeftFrame of the jobcreator gui. Contains 3 subframes: top, mid and bot. In order they control the folowing
settings for job creation:

• Top - global execution settings for the jobs (f.e. wallclock, cputime, ppn. . .)

• Mid - invocation settings (f.e. from all runs, lists, results. . .)

• Bot - global environment settings (f.e. template, save paths, copy paths. . .)

Has to inherit from the root frame because job access is required. Will spawn additional windows promting user
for settings for any particularily complex configurations.

getConf()
Reads the complete configuration selected by the user.

class lfd.gui.jobcreator.lefttopframe.TopFrame(parent, row=0, col=0)
Part of the LeftFrame of the GUI. Contains fields to select the: - number of jobs - queue type - wallclock limits
- CPU time limits - processors per node limit (ppn) - command editor

Requires a parent Frame that has access to Job object so that the settings can propagate to it.

getcommand()
Reads the curent command TextBox and reduces it to a form compatible with the createjobs module.
Separating lines in the TextBox by using <Return> key is allowed.

getn()
Reads the current value from the Entry for number of jobs and performs basic sanity checks. Will raise
an error if the value in the box is unreadable or if the number of jobs is zero. Technically all these boxes
should have verifiers but I can’t really be bothered and this one is the one that will likely get changed the
most.

class lfd.gui.jobcreator.leftmidframe.MidFrame(parent, row=1, col=0)
Part of the LeftFrame of the GUI. Contains the drop-down menu that selects the runs that will be processed.
Currently the option to select from results database are a bit wonky.

Requires a parent Frame that has access to Job object so that the settings can propagate to it.

getResultsDBPath(parent, update)
Opens a file dialog window that enables user to navigate through the filesystem to select their desired
database of results.

Expects to receive the parent window of the binding object and a StringVar that is used to represent this
path. It will update its value which triggers its trace method, which updates the class attribute used to store
the path to the database.

5.2. Creating DQS jobs 53

lfd Documentation, Release 1.0

readRes(parent)
Callback that connects to the database given by the URI and path provided by the user and selects all
existing Frames in that database. Selected frames are propagated to the runs attribute of the job object
inherited from root. Expects to receive the parent window containing the binding object. The parent
window is destroyed once all results are read in.

runFromSingle(parent, runs)
Callback function for the case when a ‘Single’ run source is chosen.

Parameters

• - the parent window that contains the widget that registers
this (parent) – callback. This window will be destroyed at the end of this func.

• - an Entry or a Text widget from which the value will be
read out (runs) – as.

runsFromList(parent, runs)
Callback function to convert a coma separated string of runs into a list of integers. Propagates the list to
the job object inherited from root. Expects to receive the parent window containing the binding object.
The parent window is destroyed once the conversion is complete.

selectRuns(selection)
Callback that will execute everytime the drop-down menu selection changes. For each of the option in the
menu here we define an action that will triger the appropriate additional menus required to configure the
job.

• All - the runs are allowed to be undefined, createjobs package will read the runlistAll file in
$PHOTO_REDUX env var location for runs

• Single - a pop-up with an entry field is displayed where only 1 run id is permitted

• List - a pop-up with a textbox is displayed where a list of runs is given as a comma separated string

• Results - a pop-up window that lets user select the DB from which jobs will be created.

setResPath(*tmp)
Callback ‘observer’ function used to track when the contents of an Entry changes. Specifically, tracks
when the text value of an Entry used to select path to results database has changed. Updates the stored
path to the results.

Expects the arguments corresponding to the invocation of trace method of a StringVar.

setUriPath(*tmp)
Callback ‘observer’ function used to track when the contents of an Entry changes. Specifically, tracks
when the text value of an Entry used to select URI path to results database has changed. Updates the
stored URI path to the results.

Expects the arguments corresponding to the invocation of trace method of a StringVar.

class lfd.gui.jobcreator.leftbotframe.BotFrame(parent, row=2, col=0)
Bottom part of the LeftFrame of the GUI. Handles all of the paths involved in the creation of a Job and updates
the template in RightFrame when the template path changes.

editTemplate()
A callback of a Button action that will change the state of the RightFrame Text box and make it editable.

saveTemplate()
A Button callback that will save the current template to a file. Spawns a file dialog to retrieve the save
location. Changes the state of the RightFrame Text box back to un-editable.

54 Chapter 5. GUIs

lfd Documentation, Release 1.0

setSavePathWithPrompt()
Callback that will spawn a directory selector through which a new path, where the job DQS files will be
saved, can be selected.

setTemplatePath(*args)
Callback that will track the Entry box of the template path and upon modification will cause the Right-
Frame template display to reload the new template.

setTemplatePathWithPrompt()
Callback that will spawn a file selector window through which a new template can be selected. See
setTemplatePath. Will cause an update of the RightFrame to redisplay the newly selected template.

updateTemplatePath(path, showerr=False)
Updates the RightFrame’s template display and replaces the current content with content read from a file
at the provided path. If showerr is supplied an error will be raised if the given path does not exist. This is
useful if the directory will be created after the path selection or if the update is called from a callback tied
to a StringVar/Entry trace methods as a way to silence errors untill the full path has been manually inputed.

Parameters

• path (str) – path to the new template

• showerr (bool) – if False no error will be raised even if path does not exist, usefull
when error needs to be raised later, on a callback initiated by a button click

LFD contains 2 GUI interfaces:

• Imagechecker is an image browser developed specifically to help with results verification.

• JobCreator is a GUI interface to createjobs module that helps with the creation of cluster job scritps because it’s
capable of displaying all selected parameters on-screen in a way that’s not possible with the createjobs module.

5.2. Creating DQS jobs 55

lfd Documentation, Release 1.0

56 Chapter 5. GUIs

CHAPTER 6

Analysis

A small subset of detected linear features will belong to trails left by meteors when flying through the SDSS field of
view (FOV), while the remaining linear features will be spurious detections or satelite.

This module provides tools and any additional functionality required for analysis, measurement or moddeling linear
features made by meteors.

The module also provides code required to repeat and reproduce the plots made in the paper.

6.1 Profiles

6.1.1 Convolution

This module contains various convolution functionality specifically suited to work with provided convolutional objects.

lfd.analysis.profiles.convolution.largest_common_scale(*args)
Finds the new appropriate common scale between given objects such that the new boundaries start at the leftmost
and end at the rightmost object and the step between two points is the smallest step value for all objects.

It is very important that the scale of the two convolved functions is the same! F.e. convolving a functions with
scale lengths of 1 arcsecond and 1 degree is drastically different than convolving functions with the same scale
length.

Parameters *args (list, tuple) – set of objects we wish to reduce to the largest common
scale

Example

>>> newscale = largest_common_scale(obj1, obj2, obj3, ...)

57

lfd Documentation, Release 1.0

lfd.analysis.profiles.convolution.convolve_seeing(obj, seeing, name=’seeing-
convolved’)

Rescales, normalizes and convolves object and seeing.

Parameters

• obj (lfd.analysis.profile.ConvolutionObject) – brightness profile of ob-
ject to be convolved

• obj2 (lfd.analysis.profile.ConvolutionObject) – seeing profile that will
be convolved with object

• name (str) – ConvolutionObjects can be assigned names, or will default to an appropriate
name based on instantiation, which helps with tracking the current object status and with
plotting.

lfd.analysis.profiles.convolution.convolve_defocus(obj, defocus, name=’defocus-
convolved’)

Rescales, normalizes and convolves object and defocus.

Parameters

• obj (lfd.analysis.profile.ConvolutionObject) – brightness profile of ob-
ject to be convolved

• defocus (lfd.analysis.profile.ConvolutionObject) – defocus profile that
will be convolved with object

• name (str) – ConvolutionObjects can be assigned names, or will default to an appropriate
name based on instantiation, which helps with tracking the current object status and with
plotting.

lfd.analysis.profiles.convolution.convolve_seeing_defocus(obj, seeing, defocus,
name=’seeing-defocus-
convolved’)

Rescales, normalizes and then convolves object, seeing and defocus.

Parameters

• obj (lfd.analysis.profile.ConvolutionObject) – brightness profile of ob-
ject to be convolved

• defocus (lfd.analysis.profile.ConvolutionObject) – defocus profile that
will be convolved with object

• seeing (lfd.analysis.profile.ConvolutionObject) – seeing profile that
will be convolved with the previous convolution result

• name (str) – ConvolutionObjects can be assigned names, or will default to an appropriate
name based on instantiation, which helps with tracking the current object status and with
plotting.

lfd.analysis.profiles.convolution.convolve(*args, name=None)
Rescales, normalizes and convolves the provided ConvolutionObjects. Functionality applied in con-
volve_seeing/defocus or convolve_seeing_defocus functions is used when two or three ConvolutionObjects are
provided. Otherwise the convolution is performed recursively which can be slow.

Parameters

• *args (tuple, list) – set of objects that will be convolved

• name (str) – ConvolutionObjects can be assigned names, or will default to an appropriate
name based on instantiation, which helps with tracking the current object status and with
plotting. If left None will default to “convolved”

58 Chapter 6. Analysis

lfd Documentation, Release 1.0

Example

>>> convolve(obj, seeing, defocus)

class lfd.analysis.profiles.convolutionobj.ConvolutionObject(obj, scale,
name=None)

Represents an object that can be convolved with other ConvolutionObjects or functions. Practical because the
objects can be created with or without knowing their analytical expressions. ConvolutionObject can be instanti-
ated from two arrays - scale and obj. Scale represents the “x-axis” and the obj array the function value at some
x-coordinate. The function is then constructed by interpolating between the obj points. If an object’s analyt-
ical light-curve is known then user can override the method ‘f’ such that it returns the value of the analytical
expression at a given coordinate.

obj
brightness values of the object, its profile

Type list, tuple or np.array

scale
the “x” coordinates against which obj was evaluated, note that objects “center” (central maximal value) is
generally centered on the 0 of the scale

Type list, tuple or np.array

__guessf
the function used for interpolation in case analytical form is unknown

Type np.interp1d

scaleleft
leftmost points of the scale

Type float

scaleright
rightmost points of the scale

Type float

objleft
rightmost points at which obj>0

Type float

objright
rightmost points at which obj>0

Type float

step
the difference between two scale points (fineness of the coordinates)

Type float

name
by default assigned to the class name instantiating this object. Useful to keep track of the function it
represents but also for plotting.

Type str

Parameters

• obj (list, tuple or np.array) – brightness values of the object, its profile

6.1. Profiles 59

lfd Documentation, Release 1.0

• scale (list, tuple or np.array) – the “x” coordinates against which obj was
evaluated, note that objects “center” (central maximal value) is generally centered on the 0
of the scale

calc_fwhm()
Calculates Full-Width-Half-Maximum of the object.

f(r=None)
Returns the value of the profile function at a point/array of points r. If analytical expression is not know
interpolation between nearest points is attempted. If this occurs a warning is raised.

classmethod fromConvolution(obj, scale, name=None)
From given arrays obj and scale create a ConvolutionObject.

norm()
Renormalizes values so that maximal value is 1.

rescale(x, y=None, step=None)
Given a scale x recalculate the brightness values of obj over the new points. If only x and y are supplied,
then a new scale is created with the new boundaries [x, y> and previously used step If x, y and step are
provided then a new scale is created with new boundaries [x, y> where the distance between two points
equals to step.

update()
Check and update the scale left and rightmost points. Find the first and last coordinate at which object is
still brighter than 0. Recalcualtes step.

6.1.2 Object Profiles

Object profiles contains commonly used profiles of different types of source objects such as PointSource, Disk etc. . .

class lfd.analysis.profiles.objectprofiles.PointSource(h, res=0.001, **kwargs)
Simple point like source. Point-like sources are not resolved, therefore regardless of scale and size only a single
element of obj will have a value

Parameters

• h (float) – height of the object, in meters

• res (float) – desired resolution in arcseconds. The scale step (the difference between
two neighbouring “x-axis” points) is then determined by scaling the appropriate angular
size of the object by the resolution, so that the object remains unresolved at the required
resolution.

f(r)
Returns the intensity value of the object at a point. Evaluating a point source over only handfull of points
is not well defined. The function may not behave properly if number of points is very small, i.e. 2 or 3
points only.

class lfd.analysis.profiles.objectprofiles.GaussianSource(h, fwhm, res=0.001,
units=’meters’,
**kwargs)

Simple gaussian intensity profile.

Parameters

• h (float) – height of the object, in meters

• fwhm (float) – FWHM of the gaussian profile

• res (float) – desired resolution, in arcseconds

60 Chapter 6. Analysis

lfd Documentation, Release 1.0

• units (string) – spatial units (meters by default) - currently not very well supported

f(r)
Evaluate the gaussian at a point.

class lfd.analysis.profiles.objectprofiles.DiskSource(h, radius, res=0.001,
**kwargs)

Brightness profile of a disk-like source.

Parameters

• h (float) – height of the object, in meters

• radius (float) – radius of the objects disk, in meters

• res (float) – desired resolution, in arcseconds

f(r, units=’arcsec’)
Returns the brightness value of the object at a point. By default the units of the scale are arcseconds but
radians are also accepted.

width()
FWHM is not a good metric for measuring the end size of the object because disk-like profiles do not taper
off towards the top. Instead width of the object (difference between first and last point with brightness
above zero) is a more appropriate measure of the size of the object.

class lfd.analysis.profiles.objectprofiles.RabinaSource(h, angle, **kwargs)

Bektesevic & Vinkovic et. al. 2017 (arxiv: 1707.07223) Eq. (9)

a 1D integrated projection of fiducial 3D meteor head model as given by:

Rabina J., et al. 2016, J. Quant. Spectrosc. Radiat. Transf,178, 295

The integration of this profile is complicated and depends on variety of parameters, such as the angle of the ob-
server linesight and meteor direction of travel. It is not practical to preform the integration every time brightness
value needs to be estimated (too slow). A set of pregenerated projections of this profile to a plane were created
where the angle between meteor direction of travel and observer linesight varies in the range from 0-1.5 radians
(0-86 degrees) which are then used to produce this 1D profile. The 1D profile is created from a crosssection
perpendicular to the meteors direction of travel. These 2D profiles are avilable as images in the rabina directory
along with the required code to generate them. The default profile is then scaled appropriately to the desired
height and any missing brightness values are then interpolated between the points.

Parameters

• angle (string, float or int) – If string the path to the premade 2D integrated Rabina profile
projection, if float or int the angle in radians that will be converted into a filename of one of
the premade Rabina profiles.

• h (float) – height of the object, in meters

Note: Integrating 3D Rabina profile to create the 2D projection is very costly. Premade profiles range from 0 to
1.5 radians in steps of 0.1 radians, or approximately 0 to 90 degrees in steps of ~6 degrees. If a specific projection
angle is required code to generate one can be found in profiles/rabina dir (see also: profiles.utils.get_rabina_dir).

f(r, units=’arcsec’)
Returns the brightness value at a desired point.

6.1. Profiles 61

lfd Documentation, Release 1.0

lfd.analysis.profiles.objectprofiles.exp_fwhms(tau, n, duration)
Generates series of n exponentially smaller FWHM values depending on the scale time tau for the desired
temporal duration.

Parameters

• tau (float) – scale time of the decay

• n (int) – number of generated FWHM values

• duration (float) – total duration in which n FWHMs will be equaly spaced

6.1.3 Seeing

This module holds the 1D Gaus-Kolmogorov provile commonly used to describe effects of atmospheric seeing on a
point source. The function is described in:

Bektesevic & Vinkovic et. al. 2017 (arxiv: 1707.07223)

class lfd.analysis.profiles.seeing.GausKolmogorov(fwhm, scale=None, res=0.001,
**kwargs)

Simple Gaus-Kolmogorov seeing. Convolving with this function has the effect of blurring the original object.

Parameters

• fwhm (float) – FWHM of the Gaus-Kolmogorov profile

• scale (list, tuple or np.array) – if scale is given then GK will be evaluated
over it

• res (float) – if scale is not given one will be created from the estimated width of the GK
profile and resolution in arcseconds

f(r, sigma=None)
Evaluates the GK at a point r. Providing sigma estimates GK at r for a different GK distribution with a
FWHM= sigma*2.436/1.035 - for convenience only.

6.1.4 Samplers

lfd.analysis.profiles.samplers.generic_sampler(sources, instrument=None,
seeingProfile=<class
’lfd.analysis.profiles.seeing.GausKolmogorov’>,
seeingFWHM=None, de-
focusProfile=<class
’lfd.analysis.profiles.defocusing.FluxPerAngle’>,
returnType=’profiles’, testRun=False,
ntest=10, **kwargs)

Convolves given source profile(s) with defocusing and seeing effects and returns a list of observed profiles and,
optionally, a structured array of profile parameters.

Parameters

• sources (list or cls) – List of classes or a single class that produces the object profile.

• instrument (tuple or None) – A tuple of diameters of primary and secondary
mirrors of the used instrument in milimeters. See also lfd.analysis.profiles.SDSS or
lfd.analysis.profiles.LSST.

• seeingProfile (cls, optional) – Class representing a seeing profile, by default
lfd.analysis.profiles.GausKolmogorov.

62 Chapter 6. Analysis

lfd Documentation, Release 1.0

• seeingFWHM (list, optional) – A list of full width half max values to use for see-
ing. If an instrument is LSST or SDSS and seeingProfile is provided will default to
expected seeing FWHM or measured median seeing FWHM value respectively. See
lfd.analysis.profiles.LSSTSEEING and lfd.analysis.profiles.SDSSSEEING.

• defocusProfile (cls) – Class representing a seeing profile, by default
lfd.analysis.profiles.FluxPerAngle.

• returnType (str) – Chose values returned: profiles, grid measurements, or both by us-
ing “profiles”, “grid” or “both” respectively. The default, profiles, returns a simple 1D list
of profiles, grid also returns a 2D structured array containing input and resulting profile
parameters.

• testRun (bool) – If true will print a table of ingoing arguments to the convolution func-
tion using the same combinations scheme. Usefull to verify whether the given convolution
parameters actually match expected.

• ntests (int) – Number of sample points printed if testRun is True.

• **kwargs (dict) – Any additional provided keyword argument is used to create a Cartesian
product of sample points which are then fed into the source, seeing and defocusing classes
and convolved.

Returns

• convProfiles (list) – List of python objects representing the result of profile convolutions.

• convMeas (np.array, optional) – A structured numpy array containing any of the following:
any keywords that are given are stored under the key in which they were given, source profile
name source, seeing profile name seeing, defocus profile name defocus, seeing FWHM,
sfwhm, defocused FWHM dfwhm, observed FWHM ofwhm, per-cent value of the depth of
central dip of the observed profile depth.

Examples

>>> convProfiles, convMeas = generic_sampler(sources=profiles.PointSource,
sfwhm=s, h=h, returnType='grid')

6.1.5 Utilities

lfd.analysis.profiles.utils.get_rabina_profile(angle, useCV2=False)
Returns image of projected Rabina profile as a function of angle between the observers line of sight and the
velocity vector of the meteor.

Parameters

• angle (float) – angle, in radians, between LOS and vector of the meteor.

• useCV2 (bool, optional) – If True will use cv2 to open the Rabina profile, otherwise mat-
plotlib. Default is False.

Notes

Pre-rendered Rabina profiles exist for angles in 0.1 increments from 0 to 1.5 inclusive. This is approximately
every 6 degrees from 0 to 90 degrees. See gen_rabina_profile.py in persistent cache on how to pre-render Rabina
profiles for other angles. Profiles are searched for in both ephemeral and persistent cache locations. If multiple
matching files are found, those from peristent cache only are returned.

6.1. Profiles 63

lfd Documentation, Release 1.0

Raises

• ValueError: – when the given angle was not in the range 0-1.5 (step 0.1) inclusive.

• FileNotFoundError: – when the searched for Rabina profile was not found. This can happen
only when a 3rd party has manually cleared the persistent cache.

lfd.analysis.profiles.utils.meshgrid(data, x, y, tgt, fold=None, axes=True)
Given a structured numpy array returns two 1D arrays and one 2D array. The two 1D arrays contain elements
of data and represent the x and y axes, respectively, of the returned 2D. Similar to numpy’s meshgrid. The 2D
array containes target column data reshaped such that it matches the chosen x and y. Optionally, if there are
multiple additional columns with which the target data varies with, it is possible to “fold” over those columns;
that is subselect only those elements of the target data that correspond to rows in the structured numpy array for
which element values equal the given fold values.

Parameters

• data (np.array) – A structured array of data

• x (str) – A string representing the column that will be selected as the x axis. Must be a valid
dtype name of data.

• y (str) – A string representing the column that will be selected as the y axis. Must be a valid
dtype name of data.

• tgt (str) – A string representing the column that will be reshaped into 2D array matching
the entries of x and y.

• fold (dict) – An optional dictionary of key:value pairs that represent column names and
values on which to fold the total data on. Folding subselects particular target column ele-
ments of data based matched values provided in the dictionary.

• axes (bool) – If True, default, both axes and grid are returned. If false, only the gridded
data is returned.

Returns

• x (np.array) – A 1D array containing data elements that represent the x axis of the targeted
reshaped data

• y (np.array) – A 1D array containing data elements that represent the y axis of the targeted
reshaped data

• gridded (np.array) – A 2D array

Examples

>>> data
array(

[(3., 1., 5., 'DiskSource', 'GausKolmogorov', 'FluxPerAngle', 1.43, 8.1, 8.1,
→˓ 3.5),

(3., 1., 6., 'DiskSource', 'GausKolmogorov', 'FluxPerAngle', 1.43, 9.8, 9.8,
→˓ 1.5),

(3., 2., 5., 'DiskSource', 'GausKolmogorov', 'FluxPerAngle', 1.43, 4.5, 4.5,
→˓ 2.6),

(3., 2., 6., 'DiskSource', 'GausKolmogorov', 'FluxPerAngle', 1.43, 4.4, 4.4,
→˓ 1.5),

(4., 1., 5., 'DiskSource', 'GausKolmogorov', 'FluxPerAngle', 1.43, 8.1, 8.1,
→˓ 3.5),

(4., 1., 6., 'DiskSource', 'GausKolmogorov', 'FluxPerAngle', 1.43, 9.8, 9.8,
→˓ 1.5),

(continues on next page)

64 Chapter 6. Analysis

lfd Documentation, Release 1.0

(continued from previous page)

(4., 2., 5., 'DiskSource', 'GausKolmogorov', 'FluxPerAngle', 1.43, 4.5, 4.5,
→˓ 2.6),

(4., 2., 6., 'DiskSource', 'GausKolmogorov', 'FluxPerAngle', 1.43, 4.4, 4.4,
→˓ 1.5)],
dtype=[('fwhm', '<f8'), ('h', '<f8'), ('radius', '<f8'), ('source', '<U12'),
('seeing', '<U14'), ('defocus', '<U12'), ('sfwhm', '<f8'), ('dfwhm', '<f8'),
('ofwhm', '<f8'), ('depth', '<f8')])

>>> x, y, z = meshgrid(meas, 'h', 'fwhm', 'ofwhm', fold={'radius':5})
>>> x
array([1., 2.])
>>> y
array([3., 4.])
>>> z
array([[8.1, 4.5],

[8.1, 4.5]])

6.1.6 Constants

lfd.analysis.profiles.consts.FWHM2SIGMA = 2.436
Conversion factor between FWHM and sqrt(variance).

lfd.analysis.profiles.consts.HEIGHTS = [80.0, 100.0, 120.0, 150.0]
Commonly used heights (throughout the paper).

lfd.analysis.profiles.consts.LSST = (4180.0, 2558.0)
The dimensions, in milimeters, of the primary and secondary LSST mirrors.

lfd.analysis.profiles.consts.LSSTSEEING = 0.67
Estimated expected value of LSST seeing.

lfd.analysis.profiles.consts.RAD2ARCSEC = 206264.806247
Conversion from radians to arcseconds.

lfd.analysis.profiles.consts.RS = [0.1, 0.5, 5, 10]
Commonly used radii, in meters (in the paper).

lfd.analysis.profiles.consts.SDSS = (1250.0, 585.0)
The dimensions, in milimeters, of the primary and secondary SDSS mirrors.

lfd.analysis.profiles.consts.SDSSSEEING = 1.43
Measured median value of SDSS seeing.

lfd.analysis.profiles.consts.SEEINGS = [0.67, 1.3455, 1.48, 1.6353]
Upper and lower values for seeing for both SDSS and LSST.

Profiles module consists of classes and functions neccessary to reproduce the plots from Bektesevic & Vinkovic et. al.
2017 (arxiv: 1707.07223).

The module provides classes for various different types of object brightness profiles (PointSource, GaussianSource,
DiskSource, RabinaSource), seeing (Gaus- Kolmogorov), and defocusing effects (FluxPerAngle).

Sources represent 1D integrated brightness profiles of different source distributions as well as various parameters
describing these distributions (such as FWHM, width, distance from instrument, variance etc.) in a common lookalike
interface. They usually carry with them their resolution, scale or units (units are more for personal reference than
actually useful).

6.1. Profiles 65

lfd Documentation, Release 1.0

Convolving Sources with Seeing and/or Defocus profile produce a new Source, which brightness profile corresponds
to that of an source which is affected by these efects. So a convolution of a PointSource and seeing represents a source
in focus observed through an atmoshere and PointSource convolved with Defocus corresponds to a defocused point
source in ideal seeing (no seeing effects) etc

The module also contains a more powerful generic sampler that produces profiles and/or specific measurements in
given points.

Examples

A simple convolution of a point profile with SDSS seeing and defocus:

from lfd.analysis import profiles

point = profiles.PointSource(100)
seeing = profiles.GausKolmogorov(profiles.SDSSSEEING)
defocus = profiles.FluxPerAngle(100, *profiles.SDSS)

a = profiles.convolve(point, seeing, defocus)

Simplest use of a generic sampler is just creating many point profiles at different heights as seen by SDSS:

from lfd.analysis import profiles
points = profiles.generic_sampler(profiles.PointSource, profiles.HEIGHTS)

A more complicated use case would be creating disk profilse of different radii at many different seeings FWHMs and
heights as seen by SDSS:

from lfd.analysis import profiles
disks = profiles.generic_sampler(profiles.DiskSource,

radius = (1, 2, 3),
seeingFWHM=profiles.SEEINGS,
h = profiles.HEIGHTS)

By default the generic sampler would return the actual profiles but it can also return a strucutred array containing all
information pertinent (used profiles, instrument, height radius, FWHM measurements etc. . .) to the created profiles
instead:

from lfd.analysis import profiles
disks = profiles.generic_sampler(profiles.DiskSource,

radius = (1, 2, 3),
seeingFWHM=profiles.SEEINGS,
h = profiles.HEIGHTS,
returnType="grid")

As well as convenient functionality to convert the retrieved structured arrays into something easily plottable with
matplotlib for example (see meshgrid).

6.2 Plotting

6.2.1 Paperplots

lfd.analysis.plotting.paperplots.plotall(path=’.’)
Create PNG image files containing figures 4 to 27 as they appeared in the:

66 Chapter 6. Analysis

lfd Documentation, Release 1.0

Bektesevic & Vinkovic et. al. 2017 (arxiv: 1707.07223)

paper at a given location.

Parameters path (str) – Optional. Path to location in which images will be stored. Defaults to
current directory.

lfd.analysis.plotting.paperplots.figure4(h=100)
Effects of seeing on the observed intensity profile of a point source located 100km from the imaging instrument.
Line types represent results based on different seeing values (as shown in the legend). The profile’s inner
structure (a dip in the middle) is reduced or completely lost as the seeing worsens. SDSS is more affected
because it has a smaller telescope aperture than LSST. The overall effect is similar even for much smaller
distances to the meteor (see also Fig. 23, 24 and 26).

Parameters h (int or float) – Distance to the meteor head from the observer in kilometers. By
default a 100km to match the figures in the paper.

Returns

• fig (matplotlib.pyplot.Figure) – Figure containing the plot.

• ax (matplotlib.pyplot.Axes) – Axes containing the plot.

lfd.analysis.plotting.paperplots.figure5()
Effects of distance on the observed intensity profile of a point source for a constant seeing (1.48for SDSS and
0.67for LSST). Line types represent results based on different meteordistances (as shown in the legend). The
image shows how smaller distances emphasize the central dip in the profile, until it reaches its extreme value
(such as here for LSST) set by the equation (7) dictated by the inner and outer radius of the primary mirror (see
also Fig. 23, 24 and 26).

Returns

• fig (matplotlib.pyplot.Figure) – Figure containing the plot.

• ax (matplotlib.pyplot.Axes) – Axes containing the plot.

lfd.analysis.plotting.paperplots.figure6(h=100, rs=(0.1, 4, 8), instrument=(4180.0,
2558.0), seeingfwhm=0.67)

Three cases of meteors with heta_D << heta_O, heta_D pprox heta_O and hetaD >> heta_O (see equations 6
and 8) illustrated for the LSST telescope at 100km distance and the seeing of 0.67. Meteors are modeled as
disks with a uniform surface brightness and the radii of 0.1m, 4m and 8m, respectively. The solid line shows
how the meteor track looks like when the telescope is focused on the meteor without any seeing, while the
dashed line shows what we actually see under defocusing and seeing. For a small disk diameter the defocused
profile corresponds to that of a point source. As the meteor diameter approaches the inner diameter of the LSSTs
primary mirror, the defocusing profile starts to lose its dip in the middle.

Parameters

• h (int or float) – Distance to the meteor head in kilometers. By default 100km.

• rs (list or tuple) – Radii of the meteor heads in meters. By default [0.1, 4, 8]

• instrument (list or tuple) – Radii of the inner and outter mirror diameters of the instru-
ment in meters. By default set to profiles.LSST

• seeingfwhm (int or float) – Seeing FWHM in arcseconds. By default pro-
files.LSSTSEEING.

Returns

• fig (matplotlib.pyplot.Figure) – Figure containing the plot.

• ax (matplotlib.pyplot.Axes) – Axes containing the plot.

6.2. Plotting 67

lfd Documentation, Release 1.0

lfd.analysis.plotting.paperplots.figure7()
Two cases of uniform brightness disk meteors with theta_D approx theta_O (R_meteor=1m) and thetaD >>
theta_O (R_meteor=4m) illustrated for the SDSS telescope at various distances (different linetypes) and the
seeing of 1.48. This seeing transforms a point source into an object similar to theta_D in size, which results in
a defocused image with a negligible central drop in the brightness profile. The distinguishing element for a disk
observed with SDSS is the very wide peak when the disk is similar in size to the telescope primary mirror and
a growing FWHM as the disk becomes much larger than the mirror (compare with fig. 4). Small disk diameter
are comparable to point source plots in Fig. 5.

Returns

• fig (matplotlib.pyplot.Figure) – Figure containing the plot.

• ax (matplotlib.pyplot.Axes) – Axes containing the plot.

Notes

The function calls on figure78 with the following parameters:
rs : (1, 4)
instrument : ‘profiles.SDSS‘
seeingfwhm : ‘profiles.SDSSSEEING‘
xlims : [(-6, 6), (-11, 11)]
xticks : [range(-30, 30, 6), range(-30, 30, 2)]

lfd.analysis.plotting.paperplots.figure8()
Two cases of uniform brightness disk meteors with theta_D approx theta_O (R_meteor=4m) and hetaD >>
heta_O (R_meteor=8m) illustrated for the LSST telescope at various distances (different linetypes) and the
seeing of 0.67. Since the seeing FWHM is much smaller than the apparent angular size heta_D of the disk in
the sky, the brightness profiles are dominated by the defocusing effect. Small disk diameter are comparable to
point source plots in Fig. 5.

Returns

• fig (matplotlib.pyplot.Figure) – Figure containing the plot.

• ax (matplotlib.pyplot.Axes) – Axes containing the plot.

Notes

The function calls on figure78 with the following parameters:
rs : (4, 8)
instrument : profiles.LSST
seeingfwhm : profiles.LSSTSEEING
xlims : [(-18, 18), (-25, 25)]
xticks : [range(-30, 30, 6), range(-30, 30, 10)]

lfd.analysis.plotting.paperplots.figure10()
Three cases of the fiducial 3D meteor model rotatedby 90, 60 and 0 degrees, observed with the SDSS telescope
from different distances (line types as shown in the legend) under the seeing FWHM of 1.48”.

Returns

• fig (matplotlib.pyplot.Figure) – Figure containing the plot.

68 Chapter 6. Analysis

lfd Documentation, Release 1.0

• ax (matplotlib.pyplot.Axes) – Axes containing the plot.

Notes

The function calls on figures1011 with the following parameters:
seeingfwhm : profiles.SDSSSEEING
instrument : profiles.SDSS
xlims : [(-7.5, 7.5)]
xticks : [range (-25, 26, 5)]

lfd.analysis.plotting.paperplots.figure11()
Three cases of the fiducial 3D meteor model rotatedby 90, 60 and 0 degrees, observed with the LSST telescope
from different distances (line types as shown in the legend) under the seeing FWHM of 1.48”.

Returns

• fig (matplotlib.pyplot.Figure) – Figure containing the plot.

• ax (matplotlib.pyplot.Axes) – Axes containing the plot.

Notes

The function calls on figures1011 with the following parameters:
seeingfwhm : profiles.LSSTSEEING
instrument : profiles.LSST
xlims : [(-7.5, 7.5)]
xticks : [range (-25, 26, 5)]

lfd.analysis.plotting.paperplots.figure12()
A fiducial model of ionized meteor trail evolution as seen by SDSS at 100km distance. The top panel is the
trail brightness as seen by the telescope without seeing. Different lines show the trail evolution with the peak
brightness evolving as exp(t/tau), with tau=1s, starting from t=0s, while the total emitted light remains the
same (i.e. the surface under the curves remains constant). The middle panel shows those profiles convolved
with seeing of 1.48” and defocusing. The bottom panel is the total time integrated trail brightness profile that
would actually be observed. This final curve should be added to the meteor head brightness profile in order to
reconstruct the overall meteor track seen in the image. All panels have the maximum brightness scaled to one
for clarity.

Returns

• fig (matplotlib.pyplot.Figure) – Figure containing the plot.

• ax (matplotlib.pyplot.Axes) – Axes containing the plot.

Notes

The function calls figures1213 with the following values:
tau : 1s
h : 100km
seeingfwhm : profiles.SDSSSEEING
instrument : profiles.SDSS

6.2. Plotting 69

lfd Documentation, Release 1.0

xlims : [(-8.5, 8.5)]
xticks : [range(-20, 20, 2)]
txtpos : [(2, 0.8), (2, 0.8), (2, 0.8)]
n : 10
duration : 2s

lfd.analysis.plotting.paperplots.figure13()
A fiducial model of ionized meteor trail evolution as seen by LSST at 100km distance. The top panel is the
trail brightness as seen by the telescope without seeing. Different lines show the trail evolution with the peak
brightness evolving as exp(t/tau), with tau=1s, starting from t=0s, while the total emitted light remains the
same (i.e. the surface under the curves remains constant). The middle panel shows those profiles convolved
with seeing of 0.67” and defocusing. The bottom panel is the total time integrated trail brightness profile that
would actually be observed. This final curve should be added to the meteor head brightness profile in order to
reconstruct the overall meteor track seen in the image. All panels have the maximum brightness scaled to one
for clarity. Compared to SDSS (figure 12), the defocus effect is much stronger due to a larger telescope aperture
and now even meteor trails can have a central dip in the brightness profile.

Returns

• fig (matplotlib.pyplot.Figure) – Figure containing the plot.

• ax (matplotlib.pyplot.Axes) – Axes containing the plot.

Notes

The function calls figures1213 with the following values:
tau : 1s
h : 100km
seeingfwhm : profiles.LSSTSEEING
instrument : profiles.LSST
xlims : [(-15, 15)]
xticks : [range(-20, 20, 2)]
txtpos : [(2, 0.8), (-5, 0.28), (2, 0.8)]
n : 10
duration : 2s

lfd.analysis.plotting.paperplots.figure14()
A fiducial model of ionized meteor trail evolution as seen by SDSS at 100km distance with trail drift, due to
atmospheric winds, included. The top panel is the trail brightness as seen without seeing. Different lines show
the trail temporal and spatial evolution with the peak brightness evolving as exp(t/tau), with tau=1s, starting from
t=0s, while the total emitted light remains the same (i.e. the surface under the curves remains constant). The trail
drift motion is modeled from left to right with each step shifting the profile by 486 steps. The vertical dashed
line shows the initial position of the meteor trail. The middle panel shows those profiles convolved with seeing
of 1.37” and defocusing. The bottom panel is the total integrated trail brightness profile that would actually
be observed. This final curve should be added to the meteor head brightness profile in order to reconstruct the
overall meteor track seen in the image.

Returns

• fig (matplotlib.pyplot.Figure) – Figure containing the plot.

• ax (matplotlib.pyplot.Axes) – Axes containing the plot.

70 Chapter 6. Analysis

lfd Documentation, Release 1.0

Notes

The function calls figures1415 with the following values:
tau : 1s
h : 100km
seeingfwhm : profiles.SDSSSEEING
instrument : profiles.SDSS
xlims : [(-4.5, 12.5)]
xticks : [range(-20, 20, 2)]
txtpos : [(6, 0.6), (6, 0.06), (6, 0.6)]
n : 10
duration : 2s
nsteps : 486

lfd.analysis.plotting.paperplots.figure15()
A fiducial model of ionized meteor trail evolution as seen by LSST at 100km distance with trail drift, due to
atmospheric winds, included. The top panel is the trail brightness as seen without seeing. Different lines show
the trail temporal and spatial evolution with the peak brightness evolving as exp(t/tau), with tau=1s, starting from
t=0s, while the total emitted light remains the same (i.e. the surface under the curves remains constant). The trail
drift motion is modeled from left to right with each step shifting the profile by 486 steps. The vertical dashed
line shows the initial position of the meteor trail. The middle panel shows those profiles convolved with seeing
of 0.67” and defocusing. The bottom panel is the total integrated trail brightness profile that would actually
be observed. This final curve should be added to the meteor head brightness profile in order to reconstruct the
overall meteor track seen in the image.

Notes

The function calls figures1415 with the following values: tau : 1s h : 100km seeingfwhm : profiles.LSSTSEEING
instrument : profiles.LSST xlims : [(-10.5, 17.5)] xticks : [range(-20, 20, 5)] txtpos : [(9, 0.6), (9, 0.06), (9, 0.6)]
n : 10 duration : 2s nsteps : 486

Returns

• fig (matplotlib.pyplot.Figure) – Figure containing the plot.

• ax (matplotlib.pyplot.Axes) – Axes containing the plot.

lfd.analysis.plotting.paperplots.figure16()
An example of the observed meteor track (solid line) at 100 km distance as it would appear in an image from the
SDSS telescope obtained as a sum of two contributions: from a defocused meteor (dashed line) contributing 80%
of the peak brightness and from a defocused meteor trail (dotted line) contributing 20%of the peak brightness.
This example illustrate how the meteor trail deforms the pure meteor head brightness profile by deforming
dominantly one side of the defocused two-peak meteor head profile.

Returns

• fig (matplotlib.pyplot.Figure) – Figure containing the plot.

• ax (matplotlib.pyplot.Axes) – Axes containing the plot.

Notes

The function calls figures1617 with the following values:

6.2. Plotting 71

lfd Documentation, Release 1.0

tau : 1s
h : 100km
seeingfwhm : profiles.SDSSSEEING
instrument : profiles.SDSS
xlims : [(-5.5, 10.5)]
xticks : [range(-20, 20, 2)]
n : 10
duration : 2s
nsteps : 486
loc : ‘upper right’

lfd.analysis.plotting.paperplots.figure17()
An example of the observed meteor track (solid line) at 100 km distance as it would appear in an image from the
LSST telescope obtained as a sum of two contributions: from a defocused meteor (dashed line) contributing 80%
of the peak brightness and from a defocused meteor trail (dotted line) contributing 20%of the peak brightness.
In this case the trail’s main disruption to the meteor head brightness is in reducing the depth of the central
brightness dip, while the profile asymmetryis not very prominent.

Returns

• fig (matplotlib.pyplot.Figure) – Figure containing the plot.

• ax (matplotlib.pyplot.Axes) – Axes containing the plot.

Notes

The function calls figures1617 with the following values:
tau : 1s
h : 100km
seeingfwhm : profiles.LSSTSEEING
instrument : profiles.LSST
xlims : [(-11.5, 14.5)]
xticks : [range(-20, 20, 5)]
n : 10
duration : 2s
nsteps : 486
loc : ‘upper right’

lfd.analysis.plotting.paperplots.figure23()
Plot of the observed FWHM (color scale and contours) as a function of distance and seeing for SDSS in three
cases (from the top to bottom): point source, a uniform disk of R_meteor=0.9m (~R_mirror) and a uniform disk
of R_meteor=3m (>> R_mirror). The right axis shows the defocussing FWHM for distances indicated on the
left axis. This is the convolution of source profile with defocusing only. The dashed line represents FWHM for
which the seeing is identical to the defocussing at agiven height. Points above the dashed line are dominated by
the seeing FWHM, while defocusing dominates points below the line.

Returns

• fig (matplotlib.pyplot.Figure) – Figure containing the plot.

• axes (list or tuple) – List of all the main matplotlib.pyplot.Axes in the figure.

72 Chapter 6. Analysis

lfd Documentation, Release 1.0

• twinaxes (list) – List of matplotlib.pyplot.Axes. If secydat data is given any created sec-
ondary axes are returned in this list. Otherwise it’s empty.

• cbaxes (list) – List of matplotlib.pyplot.Axes containing all the axes that contain colorbars.

lfd.analysis.plotting.paperplots.figure24()
Plot of the observed FWHM (color scale and contours) as a function of distance and seeing for LSST in three
cases (from the top to bottom): point source, a uniform disk of R_meteor=4m (~R_mirror) and a uniform disk
of R_meteor=8m (>> R_mirror). The right axis shows the defocussing FWHM for distances indicated on the
left axis. This is the convolution of source profile with defocusing only. The dashed line represents FWHM for
which the seeing is identical to the defocussing at agiven height. The observed FWHM is almost completely
dominated by the defocusing effect for the range of distances and seeing shown in these panels.

Returns

• fig (matplotlib.pyplot.Figure) – Figure containing the plot.

• axes (list or tuple) – List of all the main matplotlib.pyplot.Axes in the figure.

• twinaxes (list) – List of matplotlib.pyplot.Axes. If secydat data is given any created sec-
ondary axes are returned in this list. Otherwise it’s empty.

• cbaxes (list) – List of matplotlib.pyplot.Axes containing all the axes that contain colorbars.

lfd.analysis.plotting.paperplots.figure25()
The observed FWHM (color scale and contours) as afunction of a uniform brightness disk radius and meteor
distance to the telescope. The top panel is for the case of SDSS (the seeing FWHM fixed to 1.48) and the bottom
is for LSST (seeing is 0.67).

Returns

• fig (matplotlib.pyplot.Figure) – Figure containing the plot.

• axes (list or tuple) – List of all the main matplotlib.pyplot.Axes in the figure.

• twinaxes (list) – List of matplotlib.pyplot.Axes. If secydat data is given any created sec-
ondary axes are returned in this list. Otherwise it’s empty.

• cbaxes (list) – List of matplotlib.pyplot.Axes containing all the axes that contain colorbars.

lfd.analysis.plotting.paperplots.figure26()
The strength of the central dip for a point source in the observed image profile measured as the intensity loss
(colorscale and contours) relative to the maximum brightness value im the profile (see e.g. Figs.4 and 5). The
panels show how the intensity loss depends on seeing and distance from the meteor in SDSS (top panel) and
LSST (bottom panel). The right axis shows the defocusing FWHM for distances indicated on the left axis. These
are FWHM of the convolution profile of source profile and defocusing effects only.

Returns

• fig (matplotlib.pyplot.Figure) – Figure containing the plot.

• axes (list or tuple) – List of all the main matplotlib.pyplot.Axes in the figure.

• twinaxes (list) – List of matplotlib.pyplot.Axes. If secydat data is given any created sec-
ondary axes are returned in this list. Otherwise it’s empty.

• cbaxes (list) – List of matplotlib.pyplot.Axes containing all the axes that contain colorbars.

lfd.analysis.plotting.paperplots.figure27()
The strength of the central dip for a disk source in the observed image profile measured as the intensity loss
(colorscale and contours) relative to the maximum brightness value im the profile (see e.g. Figs.4 and 5). The
horizontal axis shows the meteor head radius. The seeing is set to 1.48for SDSS (top panel) and 0.67for LSST
(bottom panel).

6.2. Plotting 73

lfd Documentation, Release 1.0

Returns

• fig (matplotlib.pyplot.Figure) – Figure containing the plot.

• axes (list or tuple) – List of all the main matplotlib.pyplot.Axes in the figure.

• twinaxes (list) – List of matplotlib.pyplot.Axes. If secydat data is given any created sec-
ondary axes are returned in this list. Otherwise it’s empty.

• cbaxes (list) – List of matplotlib.pyplot.Axes containing all the axes that contain colorbars.

6.2.2 Utils

A collection of various miscelaneous functionality that helps visualize the profiles and results of convolutions and their
numerical values.

lfd.analysis.plotting.utils.plot_profiles(ax, profiles, normed=True, **kwargs)
Normalizes all given profiles and then plots them on a given axis. Set normed to False if normalization is not
desired. Lables are determined from the name attribute of the profile. *args and **kwargs are forwarded to the
matplotlib plot function.

lfd.analysis.plotting.utils.paperstyle(after_reset=True)
Returns matplotlib style context that uses the same style as was in the paper.

lfd.analysis.plotting.utils.set_ax_props(axes, xlims=(), xticks=(), xlabels=(), ylims=((-
0.01, 1.1),), ylabels=())

Sets the labels, ticks and limits on all pairs of axes, ticks and labels provided.

Parameters

• axes (matplotlib.pyplot.Axes) – Axes on which ticks, limits and labels will be set

• xlims (list or tuple) – Nested list or tuple of x-axis limits of the plots per axis. Default: (,).

• xticks (list or tuple) – Nested list or tuple of locations at which ticks and tick marks will
be placed. Default: (,)

• xlabels (list, tuple, string or generator expression) – List, tuple or an iterable that provide
a label for each of the axes

• ylims (list or tuple) – Nested list or tuple of y-axis limits of the plots per axis. Default:
(-0.01, 1.1).

• ylabels (list, tuple, string or generator expression) – List, tuple or an iterable that provide
a label for each of the axes

Note: Ticks and lims that are shorter than the number of axes will begin repeating themselves untill they match
the length of axes. Given ticks and lims NEED to be nested list or tuples (i.e. list of lists, list of tuples, tuple of
lists. . .) in order to work properly. Otherwise only a singular limit can be extracted from them and the limits
can not be set properly.

Ticks and lims can be any iterable that supports Python’s multiplication trick (i.e. [1, 2]*2 = [1, 2, 1, 2]). Given
ticks and lims that have length zero will not be set.

The labels are expected to always be given for each axis. When only a string is given an attempt will be made to
inspect and ascertain which axes are shared and which ones are on the edge of the figure and only those axes will
be labeled. This procedure, however, is susceptible to errors - often in situations where additional axes holding
colorbars are given. In that situation best course of action is to provide the labels as expected, one for each axis,
even when they are all the same.

74 Chapter 6. Analysis

lfd Documentation, Release 1.0

lfd.analysis.plotting.utils.get_ls()
Function returns the next linestyle from linestyles to help out with graphing in for loops

lfd.analysis.plotting.utils.get_style_path()
Returns the path to the file defining the Matplotlib figure style in the paper.

lfd.analysis.plotting.utils.get_data_dir()
Returns the path to data directory of utils module.

lfd.analysis.plotting.utils.get_data_file(name)
Returns a path to an existing file in the data directory of utils module. If the file doesn’t exist an OSError is
raised.

Parameters name (str) – Name of the desired data file.

Returns fname – Returns a full data dir path of an existing file.

Return type str

Raises error : OSError – File of given name doesn’t exist.

lfd.analysis.plotting.utils.create_data_file_name(name)
Creates a filepath to a file in the data directory of utils module. The file might already exist. To retrieve a filepath
to an already existing file use get_data_file.

Parameters name (str) – Name of the desired data file.

Returns fpath – Path to a file in the data directory.

Return type str

lfd.analysis.plotting.utils.get_or_create_data(filenames, samplerKwargs=None, sam-
plers=None, cache=True, **kwargs)

Retrieves data stored in filename(s) or creates the data and stores it at given location(s). If the datafiles are just
filenames the files are read and written to lfd’s cache.

Parameters

• filenames (list, tuple or str) – Singular or a list of filepath(s) to existing files, or file-
name(s) of of already cached files.

• samplerKwargs (list, tuple or dict, optional) – Single or multiple dictionaries to pass to
the sampler.

• samplers (list, function, optional) – Sampler(s) to invoke. By default generic_sampler is
used.‘

• cache (bool) – If True, data will be cached if it doesn’t exist already.

• **kwargs (dict) – Optional. Any keywords are forwarded to the sampler.

Returns data – A list of numpy arrays containing the read, or created, data.

Return type list

Notes

There is no functional difference between providing a single samplerArgs dictionary or givin the arguments
as “plain old” kwargs. When samplerArgs are a list, however, it is iterated over, and each element is passed
as a kwarg to the sampler, while kwargs are passed to the sampler as-is on every iteration.

6.2. Plotting 75

lfd Documentation, Release 1.0

6.3 Utils

A collection of various miscelaneous functionality that helps visualize the profiles and other utilities.

lfd.analysis.utils.PERSISTENT_CACHE = ['/home/docs/checkouts/readthedocs.org/user_builds/linear-feature-detector/envs/latest/lib/python3.7/site-packages/lfd-2.0.0-py3.7.egg/lfd/analysis/profiles/data', '/home/docs/checkouts/readthedocs.org/user_builds/linear-feature-detector/envs/latest/lib/python3.7/site-packages/lfd-2.0.0-py3.7.egg/lfd/analysis/plotting/data']
Cache for data that ships with lfd. Contains Rabina profiles as well as data that recreates plots from published
papers. This cache is not meant to be written to be the user, for that see EPHEMERAL_CACHE.

lfd.analysis.utils.EPHEMERAL_CACHE = '/home/docs/.lfd'
Ephemeral cache is used for data created by the user. If it doesn’t exist one will be created at import.

lfd.analysis.utils.search_cached(name, ephemeral=True, persistent=True)
Returns a list of files matching the given name. By default both caches are searched. If no matches are found an
error is raised.

Parameters

• names (str‘) – Name of the desired data file.

• ephemeral (bool, optional) – Search ephemeral cache. True by default.

• persistent (bool, optional) – Search persistent cache. True by default.

Returns filePaths – List of paths to all cached files that matched the given name pattern.

Return type list

Raises FileNotFoundError: – No cached files match given name.

lfd.analysis.utils.cache_data(data, name)
Caches given array-like data under the given name. Utilizes numpy.save function to store the array like data.

Use get_data to retrieve the saved array.

Not thread safe.

Parameters

• data (np.array) – Array like object to save to cache. The EPHEMERAL_CACHE variable
stores the location of the cache, by default at ~/.lfd/.

• name (str, list or tuple) – Name under which the data will be cached. If the name conflicts
the current date will pre pre-pended to the name.

lfd.analysis.utils.get_data(fname)
If fname is an existing file tries to load the data in it. If fname is a file name searches the cache for matches. If
the match is unique, loads it.

Parameters fname (str) – File path or file name of the file to load. Does not support loading.

Returns data – A numpy array with the requested data.

Return type np.array

Raises FileNotFoundError: – When fname could not be found.

Linear Feature Detector (LFD) library is a collection of packages that enable users to detect and analyze linear features
on astronomical images. The code was designed to be run interactively, or at scale on a cluster.

LFD is a more complete version of LFDS that contains all of the never-published features of LFDS. Except for the
linear feature detection code in the detecttrails module, most of the LFDS code was recoded from scratch and made
compatible with Python 3 and OpenCv 3.0.

76 Chapter 6. Analysis

lfd Documentation, Release 1.0

While most of the code is flexible enough to be appropriated for use with various different data sources it’s primarily
intended to be used to analyize SDSS images on a Sun Grid Engine (SGE) cluster for the purpose of detecting meteor
streaks. For more details on its application in this area of astronomy refer to:

Bektesevic & Vinkovic, 2017, MNRAS, 1612.04748, Linear Feature Detection Algorithm for Astronomical Surveys -
I. Algorithm description

Some of the previoulsy unreleased features include GUI interfaces to the PBS job creation module, a package for cola-
tion and analysis of results, a image browser designed to speed up the verification of results, a package for calculating
and predicting the expected cross section of defocused trails and other common case plotting and analysis tools are
provided.

6.3. Utils 77

lfd Documentation, Release 1.0

78 Chapter 6. Analysis

CHAPTER 7

Dependencies

• Python 3+

• OpenCv 3+

• fitsio 0.9+

• numpy

• SqlAlchemy

• Astropy

Erin Sheldon’s SDSS utilities come bundled with the provided code.

79

lfd Documentation, Release 1.0

80 Chapter 7. Dependencies

CHAPTER 8

Indices and tables

• genindex

• modindex

• search

81

lfd Documentation, Release 1.0

82 Chapter 8. Indices and tables

Python Module Index

l
lfd, 76
lfd.analysis.plotting, 75
lfd.analysis.plotting.paperplots, 66
lfd.analysis.plotting.utils, 74
lfd.analysis.profiles, 65
lfd.analysis.profiles.consts, 65
lfd.analysis.profiles.convolution, 57
lfd.analysis.profiles.convolutionobj,

59
lfd.analysis.profiles.objectprofiles,

60
lfd.analysis.profiles.samplers, 62
lfd.analysis.profiles.seeing, 62
lfd.analysis.profiles.utils, 63
lfd.analysis.utils, 76
lfd.createjobs, 42
lfd.createjobs.createjobs, 40
lfd.createjobs.writer, 42
lfd.detecttrails, 16
lfd.detecttrails.detecttrails, 11
lfd.detecttrails.processfield, 12
lfd.detecttrails.removestars, 9
lfd.gui.imagechecker, 51
lfd.gui.imagechecker.botright, 45
lfd.gui.imagechecker.databrowser, 46
lfd.gui.imagechecker.indexers, 48
lfd.gui.imagechecker.leftframe, 44
lfd.gui.imagechecker.rightframe, 45
lfd.gui.imagechecker.topright, 45
lfd.gui.imagechecker.utils, 50
lfd.gui.jobcreator, 53
lfd.gui.jobcreator.leftbotframe, 54
lfd.gui.jobcreator.leftframe, 53
lfd.gui.jobcreator.leftmidframe, 53
lfd.gui.jobcreator.lefttopframe, 53
lfd.gui.jobcreator.rightframe, 53
lfd.results, 34
lfd.results.basictime, 32

lfd.results.ccd_dimensions, 30
lfd.results.coord_conversion, 31
lfd.results.event, 23
lfd.results.frame, 26
lfd.results.point, 28
lfd.results.utils, 33

83

lfd Documentation, Release 1.0

84 Python Module Index

Index

Symbols
_Indexer__step() (lfd.gui.imagechecker.indexers.Indexer

method), 49
__guessf (lfd.analysis.profiles.convolutionobj.ConvolutionObject

attribute), 59
__init__() (lfd.gui.imagechecker.imagechecker.ImageChecker

method), 43
_check_sensibility() (lfd.results.point.Point

method), 29
_findPointsOnSides() (lfd.results.event.Event

method), 26
_getFromFrameId()

(lfd.gui.imagechecker.indexers.EventIndexer
method), 48

_getFromFrameId()
(lfd.gui.imagechecker.indexers.ImageIndexer
method), 48

_getFromFrameId()
(lfd.gui.imagechecker.indexers.Indexer
method), 49

_getFromItemId() (lfd.gui.imagechecker.indexers.EventIndexer
method), 48

_getFromItemId() (lfd.gui.imagechecker.indexers.ImageIndexer
method), 48

_getFromItemId() (lfd.gui.imagechecker.indexers.Indexer
method), 49

_getRuns() (lfd.detecttrails.detecttrails.DetectTrails
method), 11

_load() (lfd.detecttrails.detecttrails.DetectTrails
method), 11

_runInfo() (lfd.detecttrails.detecttrails.DetectTrails
method), 12

B
BasicTime (class in lfd.results.basictime), 32
BotFrame (class in lfd.gui.jobcreator.leftbotframe), 54
BottomRight (class in lfd.gui.imagechecker.botright),

45
Browser (class in lfd.gui.imagechecker.databrowser),

46

C
cache_data() (in module lfd.analysis.utils), 76
calc_fwhm() (lfd.analysis.profiles.convolutionobj.ConvolutionObject

method), 60
check_theta() (in module

lfd.detecttrails.processfield), 14
commit() (lfd.gui.imagechecker.indexers.EventIndexer

method), 48
connect2db() (in module lfd.results), 19
convert_ccd2frame() (in module

lfd.results.coord_conversion), 32
convert_frame2ccd() (in module

lfd.results.coord_conversion), 32
ConvolutionObject (class in

lfd.analysis.profiles.convolutionobj), 59
convolve() (in module

lfd.analysis.profiles.convolution), 58
convolve_defocus() (in module

lfd.analysis.profiles.convolution), 58
convolve_seeing() (in module

lfd.analysis.profiles.convolution), 57
convolve_seeing_defocus() (in module

lfd.analysis.profiles.convolution), 58
CoordinateConversionError, 31
create() (lfd.createjobs.createjobs.Jobs method), 41
create_data_file_name() (in module

lfd.analysis.plotting.utils), 75
create_imageDB() (in module

lfd.gui.imagechecker.utils), 50
create_test_sample() (in module

lfd.results.utils), 33
current (lfd.gui.imagechecker.indexers.Indexer at-

tribute), 49

D
deep_expunge() (in module lfd.results.utils), 33
deep_expunge_all() (in module lfd.results.utils),

33

85

lfd Documentation, Release 1.0

DetectTrails (class in lfd.detecttrails.detecttrails),
11

dictify_hough() (in module
lfd.detecttrails.processfield), 16

DiskSource (class in
lfd.analysis.profiles.objectprofiles), 61

draw_lines() (in module
lfd.detecttrails.processfield), 15

drawline() (lfd.gui.imagechecker.leftframe.LeftFrame
method), 44

E
editTemplate() (lfd.gui.jobcreator.leftbotframe.BotFrame

method), 54
EPHEMERAL_CACHE (in module lfd.analysis.utils), 76
Event (class in lfd.results.event), 24
event (lfd.gui.imagechecker.databrowser.EventBrowser

attribute), 47
event (lfd.gui.imagechecker.databrowser.ImageBrowser

attribute), 47
event (lfd.gui.imagechecker.indexers.EventIndexer at-

tribute), 48
EventBrowser (class in

lfd.gui.imagechecker.databrowser), 46
eventId2Filename() (in module

lfd.gui.imagechecker.utils), 50
eventId2FrameId() (in module

lfd.gui.imagechecker.utils), 50
EventIndexer (class in

lfd.gui.imagechecker.indexers), 48
events (lfd.gui.imagechecker.databrowser.EventBrowser

attribute), 47
events (lfd.gui.imagechecker.databrowser.ImageBrowser

attribute), 47
exp_fwhms() (in module

lfd.analysis.profiles.objectprofiles), 61

F
f() (lfd.analysis.profiles.convolutionobj.ConvolutionObject

method), 60
f() (lfd.analysis.profiles.objectprofiles.DiskSource

method), 61
f() (lfd.analysis.profiles.objectprofiles.GaussianSource

method), 61
f() (lfd.analysis.profiles.objectprofiles.PointSource

method), 60
f() (lfd.analysis.profiles.objectprofiles.RabinaSource

method), 61
f() (lfd.analysis.profiles.seeing.GausKolmogorov

method), 62
failedEventLoadScreen()

(lfd.gui.imagechecker.rightframe.RightFrame
method), 45

failedImageLoadScreen()
(lfd.gui.imagechecker.leftframe.LeftFrame
method), 44

failedUpdate() (lfd.gui.imagechecker.imagechecker.ImageChecker
method), 44

false() (lfd.gui.imagechecker.botright.BottomRight
method), 45

figure10() (in module
lfd.analysis.plotting.paperplots), 68

figure11() (in module
lfd.analysis.plotting.paperplots), 69

figure12() (in module
lfd.analysis.plotting.paperplots), 69

figure13() (in module
lfd.analysis.plotting.paperplots), 70

figure14() (in module
lfd.analysis.plotting.paperplots), 70

figure15() (in module
lfd.analysis.plotting.paperplots), 71

figure16() (in module
lfd.analysis.plotting.paperplots), 71

figure17() (in module
lfd.analysis.plotting.paperplots), 72

figure23() (in module
lfd.analysis.plotting.paperplots), 72

figure24() (in module
lfd.analysis.plotting.paperplots), 73

figure25() (in module
lfd.analysis.plotting.paperplots), 73

figure26() (in module
lfd.analysis.plotting.paperplots), 73

figure27() (in module
lfd.analysis.plotting.paperplots), 73

figure4() (in module
lfd.analysis.plotting.paperplots), 67

figure5() (in module
lfd.analysis.plotting.paperplots), 67

figure6() (in module
lfd.analysis.plotting.paperplots), 67

figure7() (in module
lfd.analysis.plotting.paperplots), 67

figure8() (in module
lfd.analysis.plotting.paperplots), 68

filename2frameId() (in module
lfd.gui.imagechecker.utils), 50

filepath2frameId() (in module
lfd.gui.imagechecker.utils), 51

fit_minAreaRect() (in module
lfd.detecttrails.processfield), 15

Frame (class in lfd.results.frame), 26
frameId2Filename() (in module

lfd.gui.imagechecker.utils), 51
from_file() (in module lfd.results.utils), 33
fromConvolution()

86 Index

lfd Documentation, Release 1.0

(lfd.analysis.profiles.convolutionobj.ConvolutionObject
class method), 60

FWHM2SIGMA (in module lfd.analysis.profiles.consts), 65

G
GausKolmogorov (class in

lfd.analysis.profiles.seeing), 62
GaussianSource (class in

lfd.analysis.profiles.objectprofiles), 60
generic_sampler() (in module

lfd.analysis.profiles.samplers), 62
GenericBrowser (class in

lfd.gui.imagechecker.databrowser), 47
get() (lfd.gui.imagechecker.databrowser.Browser

method), 46
get() (lfd.gui.imagechecker.indexers.Indexer method),

49
get_data() (in module lfd.analysis.utils), 76
get_data_dir() (in module

lfd.analysis.plotting.utils), 75
get_data_file() (in module

lfd.analysis.plotting.utils), 75
get_filter_from_int() (in module

lfd.results.coord_conversion), 32
get_filter_int() (in module

lfd.results.coord_conversion), 32
get_ls() (in module lfd.analysis.plotting.utils), 74
get_node_with_files() (in module

lfd.createjobs.writer), 42
get_or_create_data() (in module

lfd.analysis.plotting.utils), 75
get_rabina_profile() (in module

lfd.analysis.profiles.utils), 63
get_style_path() (in module

lfd.analysis.plotting.utils), 75
getAllRuns() (lfd.createjobs.createjobs.Jobs

method), 41
getcommand() (lfd.gui.jobcreator.lefttopframe.TopFrame

method), 53
getConf() (lfd.gui.jobcreator.leftframe.LeftFrame

method), 53
getn() (lfd.gui.jobcreator.lefttopframe.TopFrame

method), 53
getNext() (lfd.gui.imagechecker.databrowser.Browser

method), 46
getPrevious() (lfd.gui.imagechecker.databrowser.Browser

method), 46
getResultsDBPath()

(lfd.gui.jobcreator.leftmidframe.MidFrame
method), 53

goto() (lfd.gui.imagechecker.indexers.Indexer method),
50

H
HEIGHTS (in module lfd.analysis.profiles.consts), 65

I
image (lfd.gui.imagechecker.databrowser.EventBrowser

attribute), 47
image (lfd.gui.imagechecker.databrowser.ImageBrowser

attribute), 47
image (lfd.gui.imagechecker.indexers.ImageIndexer at-

tribute), 48
ImageBrowser (class in

lfd.gui.imagechecker.databrowser), 47
ImageChecker (class in

lfd.gui.imagechecker.imagechecker), 43
ImageIndexer (class in

lfd.gui.imagechecker.indexers), 48
images (lfd.gui.imagechecker.databrowser.EventBrowser

attribute), 47
images (lfd.gui.imagechecker.databrowser.ImageBrowser

attribute), 47
impl (lfd.results.basictime.BasicTime attribute), 32
Indexer (class in lfd.gui.imagechecker.indexers), 49
initEvents() (lfd.gui.imagechecker.databrowser.EventBrowser

method), 47
initEvents() (lfd.gui.imagechecker.databrowser.ImageBrowser

method), 47
initFromDB() (lfd.gui.imagechecker.indexers.EventIndexer

method), 48
initFromDB() (lfd.gui.imagechecker.indexers.ImageIndexer

method), 49
initFromDB() (lfd.gui.imagechecker.indexers.Indexer

method), 50
initGUI() (lfd.gui.imagechecker.imagechecker.ImageChecker

method), 44
initImages() (lfd.gui.imagechecker.databrowser.EventBrowser

method), 47
initImages() (lfd.gui.imagechecker.databrowser.ImageBrowser

method), 47
initImages() (lfd.gui.imagechecker.imagechecker.ImageChecker

method), 44
initResults() (lfd.gui.imagechecker.imagechecker.ImageChecker

method), 44
item (lfd.gui.imagechecker.indexers.Indexer attribute),

49
items (lfd.gui.imagechecker.indexers.Indexer attribute),

49

J
Jobs (class in lfd.createjobs.createjobs), 40

L
largest_common_scale() (in module

lfd.analysis.profiles.convolution), 57

Index 87

lfd Documentation, Release 1.0

LeftFrame (class in lfd.gui.imagechecker.leftframe), 44
LeftFrame (class in lfd.gui.jobcreator.leftframe), 53
lfd (module), 76
lfd.analysis.plotting (module), 75
lfd.analysis.plotting.paperplots (mod-

ule), 66
lfd.analysis.plotting.utils (module), 74
lfd.analysis.profiles (module), 65
lfd.analysis.profiles.consts (module), 65
lfd.analysis.profiles.convolution (mod-

ule), 57
lfd.analysis.profiles.convolutionobj

(module), 59
lfd.analysis.profiles.objectprofiles

(module), 60
lfd.analysis.profiles.samplers (module),

62
lfd.analysis.profiles.seeing (module), 62
lfd.analysis.profiles.utils (module), 63
lfd.analysis.utils (module), 76
lfd.createjobs (module), 42
lfd.createjobs.createjobs (module), 40
lfd.createjobs.writer (module), 42
lfd.detecttrails (module), 16
lfd.detecttrails.detecttrails (module), 11
lfd.detecttrails.processfield (module), 12
lfd.detecttrails.removestars (module), 9
lfd.gui.imagechecker (module), 51
lfd.gui.imagechecker.botright (module), 45
lfd.gui.imagechecker.databrowser (mod-

ule), 46
lfd.gui.imagechecker.indexers (module), 48
lfd.gui.imagechecker.leftframe (module),

44
lfd.gui.imagechecker.rightframe (module),

45
lfd.gui.imagechecker.topright (module), 45
lfd.gui.imagechecker.utils (module), 50
lfd.gui.jobcreator (module), 53
lfd.gui.jobcreator.leftbotframe (module),

54
lfd.gui.jobcreator.leftframe (module), 53
lfd.gui.jobcreator.leftmidframe (module),

53
lfd.gui.jobcreator.lefttopframe (module),

53
lfd.gui.jobcreator.rightframe (module), 53
lfd.results (module), 34
lfd.results.basictime (module), 32
lfd.results.ccd_dimensions (module), 30
lfd.results.coord_conversion (module), 31
lfd.results.event (module), 23
lfd.results.frame (module), 26
lfd.results.point (module), 28

lfd.results.utils (module), 33
LineTime (class in lfd.results.basictime), 33
lmb() (lfd.gui.imagechecker.leftframe.LeftFrame

method), 44
LSST (in module lfd.analysis.profiles.consts), 65
LSSTSEEING (in module lfd.analysis.profiles.consts), 65

M
makeRunlst() (lfd.createjobs.createjobs.Jobs

method), 41
maxindex (lfd.gui.imagechecker.indexers.Indexer at-

tribute), 49
meshgrid() (in module lfd.analysis.profiles.utils), 64
MidFrame (class in lfd.gui.jobcreator.leftmidframe), 53
move() (lfd.results.point.Point method), 29

N
name (lfd.analysis.profiles.convolutionobj.ConvolutionObject

attribute), 59
next() (lfd.gui.imagechecker.indexers.Indexer method),

50
nextimg() (lfd.gui.imagechecker.botright.BottomRight

method), 45
norm() (lfd.analysis.profiles.convolutionobj.ConvolutionObject

method), 60

O
obj (lfd.analysis.profiles.convolutionobj.ConvolutionObject

attribute), 59
objleft (lfd.analysis.profiles.convolutionobj.ConvolutionObject

attribute), 59
objright (lfd.analysis.profiles.convolutionobj.ConvolutionObject

attribute), 59

P
paperstyle() (in module lfd.analysis.plotting.utils),

74
PERSISTENT_CACHE (in module lfd.analysis.utils), 76
plot_profiles() (in module

lfd.analysis.plotting.utils), 74
plotall() (in module

lfd.analysis.plotting.paperplots), 66
Point (class in lfd.results.point), 28
PointSource (class in

lfd.analysis.profiles.objectprofiles), 60
pprint() (in module lfd.results.utils), 33
previmg() (lfd.gui.imagechecker.botright.BottomRight

method), 45
previous() (lfd.gui.imagechecker.indexers.Indexer

method), 50
process() (lfd.detecttrails.detecttrails.DetectTrails

method), 12

88 Index

lfd Documentation, Release 1.0

process_bind_param()
(lfd.results.basictime.BasicTime method),
33

process_field_bright() (in module
lfd.detecttrails.processfield), 12

process_field_dim() (in module
lfd.detecttrails.processfield), 13

process_result_value()
(lfd.results.basictime.BasicTime method),
33

Q
query() (lfd.results.event.Event class method), 26
query() (lfd.results.frame.Frame class method), 27

R
RabinaSource (class in

lfd.analysis.profiles.objectprofiles), 61
RAD2ARCSEC (in module lfd.analysis.profiles.consts), 65
read_photoObj() (in module

lfd.detecttrails.removestars), 9
readRes() (lfd.gui.jobcreator.leftmidframe.MidFrame

method), 53
remove_stars() (in module

lfd.detecttrails.removestars), 10
rescale() (lfd.analysis.profiles.convolutionobj.ConvolutionObject

method), 60
RightFrame (class in

lfd.gui.imagechecker.rightframe), 45
RightFrame (class in lfd.gui.jobcreator.rightframe), 53
rmb() (lfd.gui.imagechecker.leftframe.LeftFrame

method), 44
RS (in module lfd.analysis.profiles.consts), 65
runFromSingle() (lfd.gui.jobcreator.leftmidframe.MidFrame

method), 54
runsFromList() (lfd.gui.jobcreator.leftmidframe.MidFrame

method), 54

S
saveTemplate() (lfd.gui.jobcreator.leftbotframe.BotFrame

method), 54
scale (lfd.analysis.profiles.convolutionobj.ConvolutionObject

attribute), 59
scaleleft (lfd.analysis.profiles.convolutionobj.ConvolutionObject

attribute), 59
scaleright (lfd.analysis.profiles.convolutionobj.ConvolutionObject

attribute), 59
SDSS (in module lfd.analysis.profiles.consts), 65
SDSSSEEING (in module lfd.analysis.profiles.consts), 65
search() (lfd.gui.imagechecker.botright.BottomRight

method), 45
search_cached() (in module lfd.analysis.utils), 76
SEEINGS (in module lfd.analysis.profiles.consts), 65

selectimages() (lfd.gui.imagechecker.botright.BottomRight
method), 45

selectresults() (lfd.gui.imagechecker.botright.BottomRight
method), 46

selectRuns() (lfd.gui.jobcreator.leftmidframe.MidFrame
method), 54

session_scope() (in module lfd.results.utils), 33
set_ax_props() (in module

lfd.analysis.plotting.utils), 74
setResPath() (lfd.gui.jobcreator.leftmidframe.MidFrame

method), 54
setSavePathWithPrompt()

(lfd.gui.jobcreator.leftbotframe.BotFrame
method), 54

setTemplatePath()
(lfd.gui.jobcreator.leftbotframe.BotFrame
method), 55

setTemplatePathWithPrompt()
(lfd.gui.jobcreator.leftbotframe.BotFrame
method), 55

setup_createjobs() (in module lfd), 35
setup_debug() (in module

lfd.detecttrails.processfield), 14
setup_detecttrails() (in module lfd), 2
setup_results() (in module lfd), 18
setUriPath() (lfd.gui.jobcreator.leftmidframe.MidFrame

method), 54
skip() (lfd.gui.imagechecker.indexers.Indexer method),

50
snap2ccd() (lfd.results.event.Event method), 26
step (lfd.analysis.profiles.convolutionobj.ConvolutionObject

attribute), 59
switchSys() (lfd.results.point.Point method), 30

T
TopFrame (class in lfd.gui.jobcreator.lefttopframe), 53
TopRight (class in lfd.gui.imagechecker.topright), 45
true() (lfd.gui.imagechecker.botright.BottomRight

method), 46

U
update() (lfd.analysis.profiles.convolutionobj.ConvolutionObject

method), 60
update() (lfd.gui.imagechecker.imagechecker.ImageChecker

method), 44
update() (lfd.gui.imagechecker.leftframe.LeftFrame

method), 44
update() (lfd.gui.imagechecker.rightframe.RightFrame

method), 45
updateImageData()

(lfd.gui.imagechecker.topright.TopRight
method), 45

updateLine() (lfd.gui.imagechecker.leftframe.LeftFrame
method), 44

Index 89

lfd Documentation, Release 1.0

updateTemplatePath()
(lfd.gui.jobcreator.leftbotframe.BotFrame
method), 55

useCoordSys() (lfd.results.point.Point method), 30

W
width() (lfd.analysis.profiles.objectprofiles.DiskSource

method), 61
writeJob() (in module lfd.createjobs.writer), 42

90 Index

	Top level LFD overview
	Setup
	Examples

	Linear Feature detection
	Detection parameters
	Examples
	Table of removestars parameters
	Table of bright parameters
	Table of dim parameters
	Module: removestars
	Module: detecttrails
	Module: processfield

	Handling the results
	Database and setup
	Connecting to the DB
	Examples
	Common misuse patterns
	Event
	Frame
	Point
	Time
	Utilities

	Creating DQS cluster jobs
	Setup
	Templates
	Examples
	Jobs

	GUIs
	Verifying results
	Creating DQS jobs

	Analysis
	Profiles
	Plotting
	Utils

	Dependencies
	Indices and tables
	Python Module Index
	Index

